CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Molecular dynamics simulations of displacement cascades in Fe–10%Cr systems |
Yu Gang(郁刚)†, Ma Yan(马雁), Cai Jun(蔡军), and Lu Dao-Gang(陆道纲) |
School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China |
|
|
Abstract Molecular dynamics simulations of the displacement cascades in Fe-10%Cr systems are used to simulate the primary knocked-on atom events of the irradiation damage at temperatures 300, 600, and 750 K with primary knocked-on atom energies between 1 and 15 keV. The results indicate that the vacancies produced by the cascade are all in the central region of the displacement cascade. During the cascade, all recoil Fe and Cr atoms combine with each other to form Fe-Cr or Fe-Fe interstitial dumbbells as well as interstitial clusters. The number and the size of interstitial clusters increase with the energy of the primary knocked-on atom and the temperature. A few large clusters consist of a large number of Fe interstitials with a few Cr atoms, the rest are Fe-Cr clusters with small and medium sizes. The interstitial dumbbells of Fe-Fe and Fe-Cr are in the $\langle111\rangle$ and $\langle110\rangle$ series directions, respectively.
|
Received: 26 November 2010
Revised: 19 August 2011
Accepted manuscript online:
|
PACS:
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB209803) and the Applied Basic Research Program of Hebei Province, China (Grant No. 10165401P). |
Corresponding Authors:
Yu Gang,yugang718@gmail.com
E-mail: yugang718@gmail.com
|
Cite this article:
Yu Gang(郁刚), Ma Yan(马雁), Cai Jun(蔡军), and Lu Dao-Gang(陆道纲) Molecular dynamics simulations of displacement cascades in Fe–10%Cr systems 2012 Chin. Phys. B 21 036101
|
[1] Klueh R and Harries D 2001 High-Chromium Ferritic and Martensitic Steels for Nuclear Applications (ASTM Intl.) p. 337[2] Mansur L K, Rowcliffe A F, Nanstad R K, Zinkle S J, Corwin W R and Stoller R E 2004 J. Nucl. Mater. 329-333 166[3] Zinkle S J 2005 Phys. Plasmas 12 058101[4] Wirth B D, Caturla M J, de la Rubia T D, Khraishi T and Zbib H 2001 Nucl. Instrum. and Meth. B 180 23[5] Malerba L 2006 J. Nucl. Mater. 351 28[6] Calder A F and Bacon D J 1997 Mater. Res. Soc. Symp. 439 521[7] Calder A F, Bacon D J, Barashev A V and Osetsky Y N 2008 it Philos. Mag. Lett. 88 43[8] Becquart C S, Domain C, van Duysen J C and Raulot J M 2001 J. Nucl. Mater. 294 274[9] Terentyev D, Malerba L, Chakarova R, Domain C, Nordlund K, Olsson P, Rieth M and Wallenius J 2006 J. Nucl. Mater. 349 119[10] Björkas C, Nordlund K, Malerba L, Terentyev D and Olsson P 2008 J. Nucl. Mater. 372 312[11] Malerba L, Terentyev D, Olsson P, Chakarova R and Wallenius J 2004 J. Nucl. Mater. 329-333 1156[12] Shim J H, Lee H J and Wirth B D 2006 J. Nucl. Mater. 351 56[13] Wallenius J, Olsson P, Lagerstedt C, Sandberg N, Chakarova R and Pontikis V 2003 Phys. Rev. B 69 094103[14] Mirebeau I, Hennion M and Parette G 1984 Phys. Rev. Lett. 53 687[15] Filippova N P, Shabashov V A and Nikolaev A L 2000 Phys. Met. Metall. 90 145[16] Dubuisson P, Gilbon D and S閞an J L 1993 J. Nucl. Mater. 205 178[17] Mathon M H, de Carlan Y, Geoffroy G, Averty X, Alamo A and de Novion C H 2003 J. Nucl. Mater. 312 236[18] Yu J 2007 Radiation Effects on Materials (Beijing: Chemical Industry Publishing House) (in Chinese)[19] Björkas C, Nordlund K, Malerba L, Terentyev D and Olsson P 2008 J. Nucl. Mater. 372 312[20] Finnis M W 1988 MOLDY6-A Molecular Dynamics Program for Simulation of Pure Metals (Harwell: AERE R-13182, UKAEA Harwell Laboratory)[21] Olsson P, Wallenius J, Domain C, Nordlund K and Malerba L 2005 Phys. Rev. B 72 214119[22] Ackland G J, Mendelev M I, Srolovitz D J, Han S and Barashev A V 2004 J. Phys.: Condens. Matter 16 S2629[23] Becquar C S, Domain C, Legris A and van Duysen J C 2000 J. Nucl. Mater. 280 73[24] Bacon D J, Calder A F and Gao F 1995 Nucl. Instrum. And Meth. B 102 37[25] Stoller R E 2000 J. Nucl. Mater. 276 22[26] Norgett M, Robinson M and Torrens I 1975 Nucl. Eng. Des. 33 50[27] Domain C 2004 J. Nucl. Mater. 335 121[28] Nordlund K, Ghaly M, Averback R S, Caturla M J, de la Rubia T D and Tarus J 1998 Phys. Rev. B 57 7556[29] Bacon D J, Calder A F and Gao F 1997 J. Nucl. Mater. 251 1[30] Schaeublin R and Victoria M 2003 J. Nucl. Mater. 283-287 339[31] Domain C, Becquart C S and Malerba L 2004 J. Nucl. Mater. 335 121 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|