Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 036101    DOI: 10.1088/1674-1056/21/3/036101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics simulations of displacement cascades in Fe–10%Cr systems

Yu Gang(郁刚), Ma Yan(马雁), Cai Jun(蔡军), and Lu Dao-Gang(陆道纲)
School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
Abstract  Molecular dynamics simulations of the displacement cascades in Fe-10%Cr systems are used to simulate the primary knocked-on atom events of the irradiation damage at temperatures 300, 600, and 750 K with primary knocked-on atom energies between 1 and 15 keV. The results indicate that the vacancies produced by the cascade are all in the central region of the displacement cascade. During the cascade, all recoil Fe and Cr atoms combine with each other to form Fe-Cr or Fe-Fe interstitial dumbbells as well as interstitial clusters. The number and the size of interstitial clusters increase with the energy of the primary knocked-on atom and the temperature. A few large clusters consist of a large number of Fe interstitials with a few Cr atoms, the rest are Fe-Cr clusters with small and medium sizes. The interstitial dumbbells of Fe-Fe and Fe-Cr are in the $\langle111\rangle$ and $\langle110\rangle$ series directions, respectively.
Keywords:  molecular dynamics simulations      displacement cascades      irradiation damage      primary knocked-on atom  
Received:  26 November 2010      Revised:  19 August 2011      Accepted manuscript online: 
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB209803) and the Applied Basic Research Program of Hebei Province, China (Grant No. 10165401P).
Corresponding Authors:  Yu Gang,yugang718@gmail.com     E-mail:  yugang718@gmail.com

Cite this article: 

Yu Gang(郁刚), Ma Yan(马雁), Cai Jun(蔡军), and Lu Dao-Gang(陆道纲) Molecular dynamics simulations of displacement cascades in Fe–10%Cr systems 2012 Chin. Phys. B 21 036101

[1] Klueh R and Harries D 2001 High-Chromium Ferritic and Martensitic Steels for Nuclear Applications (ASTM Intl.) p. 337
[2] Mansur L K, Rowcliffe A F, Nanstad R K, Zinkle S J, Corwin W R and Stoller R E 2004 J. Nucl. Mater. 329-333 166
[3] Zinkle S J 2005 Phys. Plasmas 12 058101
[4] Wirth B D, Caturla M J, de la Rubia T D, Khraishi T and Zbib H 2001 Nucl. Instrum. and Meth. B 180 23
[5] Malerba L 2006 J. Nucl. Mater. 351 28
[6] Calder A F and Bacon D J 1997 Mater. Res. Soc. Symp. 439 521
[7] Calder A F, Bacon D J, Barashev A V and Osetsky Y N 2008 it Philos. Mag. Lett. 88 43
[8] Becquart C S, Domain C, van Duysen J C and Raulot J M 2001 J. Nucl. Mater. 294 274
[9] Terentyev D, Malerba L, Chakarova R, Domain C, Nordlund K, Olsson P, Rieth M and Wallenius J 2006 J. Nucl. Mater. 349 119
[10] Björkas C, Nordlund K, Malerba L, Terentyev D and Olsson P 2008 J. Nucl. Mater. 372 312
[11] Malerba L, Terentyev D, Olsson P, Chakarova R and Wallenius J 2004 J. Nucl. Mater. 329-333 1156
[12] Shim J H, Lee H J and Wirth B D 2006 J. Nucl. Mater. 351 56
[13] Wallenius J, Olsson P, Lagerstedt C, Sandberg N, Chakarova R and Pontikis V 2003 Phys. Rev. B 69 094103
[14] Mirebeau I, Hennion M and Parette G 1984 Phys. Rev. Lett. 53 687
[15] Filippova N P, Shabashov V A and Nikolaev A L 2000 Phys. Met. Metall. 90 145
[16] Dubuisson P, Gilbon D and S閞an J L 1993 J. Nucl. Mater. 205 178
[17] Mathon M H, de Carlan Y, Geoffroy G, Averty X, Alamo A and de Novion C H 2003 J. Nucl. Mater. 312 236
[18] Yu J 2007 Radiation Effects on Materials (Beijing: Chemical Industry Publishing House) (in Chinese)
[19] Björkas C, Nordlund K, Malerba L, Terentyev D and Olsson P 2008 J. Nucl. Mater. 372 312
[20] Finnis M W 1988 MOLDY6-A Molecular Dynamics Program for Simulation of Pure Metals (Harwell: AERE R-13182, UKAEA Harwell Laboratory)
[21] Olsson P, Wallenius J, Domain C, Nordlund K and Malerba L 2005 Phys. Rev. B 72 214119
[22] Ackland G J, Mendelev M I, Srolovitz D J, Han S and Barashev A V 2004 J. Phys.: Condens. Matter 16 S2629
[23] Becquar C S, Domain C, Legris A and van Duysen J C 2000 J. Nucl. Mater. 280 73
[24] Bacon D J, Calder A F and Gao F 1995 Nucl. Instrum. And Meth. B 102 37
[25] Stoller R E 2000 J. Nucl. Mater. 276 22
[26] Norgett M, Robinson M and Torrens I 1975 Nucl. Eng. Des. 33 50
[27] Domain C 2004 J. Nucl. Mater. 335 121
[28] Nordlund K, Ghaly M, Averback R S, Caturla M J, de la Rubia T D and Tarus J 1998 Phys. Rev. B 57 7556
[29] Bacon D J, Calder A F and Gao F 1997 J. Nucl. Mater. 251 1
[30] Schaeublin R and Victoria M 2003 J. Nucl. Mater. 283-287 339
[31] Domain C, Becquart C S and Malerba L 2004 J. Nucl. Mater. 335 121
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[3] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[4] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[5] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[6] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[7] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[8] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[9] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[10] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[11] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[12] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[13] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[14] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[15] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
No Suggested Reading articles found!