Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 035201    DOI: 10.1088/1674-1056/21/3/035201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet

Eerdunbuhe(额尔敦布和)a)b) and Temuerchaolu(特木尔朝鲁)a)c)†
a. College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China;
b. Department of Mathematics, Hohhot University for Nationalities, Hohhot 010051, China;
c. College of Art and Sciences, Shanghai Maritime University, Shanghai 200135, China
Abstract  The approximate solution of the magneto-hydrodynamic (MHD) boundary layer flow over a nonlinear stretching sheet is obtained by combining the Lie symmetry method with the homotopy perturbation method. The approximate solution is tabulated, plotted for the values of various parameters and compared with the known solutions. It is found that the approximate solution agrees very well with the known numerical solutions, showing the reliability and validity of the present work.
Keywords:  magneto-hydrodynamic (MHD) boundary layer flow      Lie symmetry method      homotopy perturbation method      approximate solution  
Received:  20 September 2011      Revised:  09 November 2011      Accepted manuscript online: 
PACS:  52.65.Kj (Magnetohydrodynamic and fluid equation)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  11.30.-j (Symmetry and conservation laws)  
  46.15.Ff (Perturbation and complex analysis methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11071159) and the College Science Research Project of Inner Mongolia, China (Grant No. NJzy08180).
Corresponding Authors:  Temuerchaolu,eerdunbuhe@163.com     E-mail:  eerdunbuhe@163.com

Cite this article: 

Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet 2012 Chin. Phys. B 21 035201

[1] Hayat T, Hussain Q and Javed T 2009 emphNonlinear Analysis: Real World Applications 10 966
[2] Su X H and Zheng L C 2011 emphAppl. Math. Mech. 32 401
[3] Ghotbi A R 2009 emphCommun. Nonlinear Sci. Numer. Simulat. 14 2653
[4] Ganji D D, Bararnia H, Soleimani S and Ghasemi E 2009 emphMod. Phys. Lett. B 23 2541
[5] Bluman G 1974 emphQuarterly Appl. Math. 31 403
[6] Kovalev V F 1994 emphLie Group and Their Applications 1 104
[7] Liao S J 2003 emphBeyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: Chapman Hall/CRC Press)
[8] He J H 1999 emphComput. Meth. Appl. Mech. Eng. 178 257
[9] He J H 1999 emphInt. J. Non-linear Mech. 34 699
[10] Adomian G 1994 emphSolving Frontier Problems of Physics: The Decomposition Method (Boston: Kluwer Academic Publishers)
[11] Wazwaz A M 1999 emphAppl. Math. Comput. 102 77
[12] Wu Q K 2011 emphActa Phys. Sin. 60 068802 (in Chinese)
[13] Kalpakides V K and Balassas K G 2004 emphInt. J. Non-linear Mech. 39 1659
[14] Bluman G and Kumei S 1989 emphSymmetries and Differential Equations (New York: Springer)
[15] Temuerchaolu 2003 emphAdv. Math. 32 208
[16] Temuerchaolu and Bai Y S 2009 emphAppl. Math. Mech. 30 595
[17] Temuerchaolu and Pang J 2010 emphJ. Eng. Math. 66 181
[18] Xu L 2007 emphComput. Math. Appl. 54 1067
[19] He J H 2000 emphInt. J. Non-linear Mech. 35 37
[20] He J H 2006 emphPhys. Lett. A 350 87
[21] He J H 2006 emphInt. J. Mod. Phys. B 20 1141
[22] He J H 2006 emphNon-perturbative Methods for Strongly Nonlinear Problems (Dissertation) (Berlin: de-Verlag im Internet GmbH)
[23] He J H 2009 emphComput. Math. Appl. 57 410
[24] Ariel P D 2010 emphNonl. Sci. Lett. A 1 43
[25] Pavlov K B 1975 emphMagn. Gidrod. 4 146
[1] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[2] Dynamic characteristics of resonant gyroscopes study based on the Mathieu equation approximate solution
Fan Shang-Chun(樊尚春), Li Yan(李艳), Guo Zhan-She(郭占社), Li Jing(李晶), and Zhuang Hai-Han(庄海涵) . Chin. Phys. B, 2012, 21(5): 050401.
[3] Approximate solutions of nonlinear PDEs by the invariant expansion
Wu Jiang-Long (吴江龙), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2012, 21(12): 120204.
[4] Asymptotic solution for the Eiño time delay sea–air oscillator model
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Lin Yi-Hua(林一骅). Chin. Phys. B, 2011, 20(7): 070205.
[5] Homotopic mapping solving method of the reduces equation for Kelvin waves
Mo Jia-Qi(莫嘉琪), Lin Yi-Hua(林一骅), and Lin Wan-Tao(林万涛). Chin. Phys. B, 2010, 19(3): 030202.
[6] Approximate solution for the Klein-Gordon-Schr?dinger equation by the homotopy analysis method
Wang Jia(王佳), Li Biao(李彪), and Ye Wang-Chuan(叶望川). Chin. Phys. B, 2010, 19(3): 030401.
[7] Three types of generalized Kadomtsev-Petviashvili equations arising from baroclinic potential vorticity equation
Zhang Huan-Ping(张焕萍), Li Biao(李彪), Chen Yong (陈勇), and Huang Fei(黄菲). Chin. Phys. B, 2010, 19(2): 020201.
[8] A new method to obtain approximate symmetry of nonlinear evolution equation from perturbations
Zhang Zhi-Yong(张智勇), Yong Xue-Lin(雍雪林), and Chen Yu-Fu(陈玉福). Chin. Phys. B, 2009, 18(7): 2629-2633.
[9] Study on an extended Boussinesq equation
Chen Chun-Li(陈春丽), Zhang Jin E(张近), and Li Yi-Shen(李翊神). Chin. Phys. B, 2007, 16(8): 2167-2179.
[10] The sea--air oscillator model of decadal variations in subtropical cells and equatorial Pacific SST
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Lin Yi-Hua(林一骅). Chin. Phys. B, 2007, 16(7): 1908-1911.
[11] Variational iteration method for solving perturbed mechanism of western boundary undercurrents in the Pacific
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Wang Hui(王辉) . Chin. Phys. B, 2007, 16(4): 951-954.
No Suggested Reading articles found!