Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030507    DOI: 10.1088/1674-1056/21/3/030507
GENERAL Prev   Next  

Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrödinger equation

Ma Zheng-Yi(马正义) and Ma Song-Hua(马松华)
College of Mathematics and Physics, Zhejiang Lishui University, Lishui 323000, China
Abstract  Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrödinger equation with time-varying coefficients and a harmonica potential using the similarity transformation and a direct ansatz. Several free functions of time t are involved to generate abundant wave structures. Three types of elementary functions are chosen to exhibit the corresponding nonlinear rogue wave propagations.
Keywords:  nonlinear Schrödinger equation      similarity transformation      rational-like solution      rogue wave  
Received:  06 June 2011      Revised:  05 July 2011      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10772110) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y606049, Y6090681, and Y6100257).
Corresponding Authors:  Ma Zheng-Yi,mazhengyi_77@yahoo.com.cn     E-mail:  mazhengyi_77@yahoo.com.cn

Cite this article: 

Ma Zheng-Yi(马正义) and Ma Song-Hua(马松华) Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrödinger equation 2012 Chin. Phys. B 21 030507

[1] Onorato M, Osborne A R, Serio M and Bertone S 2001 Phys. Rev. Lett. 86 5831
[2] Kharif C and Pelinovsky E 2003 Eur. J. Mech. B 22 603
[3] Osborne A R 2009 Nonlinear Ocean Waves (New York: Academic Press)
[4] Kharif C, Pelinovsky E and Slunyaev A 2009 Rogue Waves in the Ocean, Observation, Theories and Modeling (New York: Springer-Verlag)
[5] Peregrine D H 1983 J. Austral. Math. Soc. Ser. B 25 16
[6] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[7] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[8] Akhmediev N, Soto-Crespo J M and Ankiewiczi A 2009 Phys. Lett. A 373 2137
[9] Yan Z Y 2010 Phys. Lett. A 374 672
[10] Yan Z Y 2010 Commun. Theor. Phys. 54 947
[11] Song S Y, Wang J, Meng J M, Wang J B and Hu P X 2010 Acta Phys. Sin. 59 1123 (in Chinese)
[12] Zhou J, Ren H D and Feng Y P 2010 Acta. Phys. Sin. 59 3992 (in Chinese)
[13] Song S Y, Wang J, Wang J B, Song S S and Meng J M 2010 Acta Phys. Sin. 59 6339 (in Chinese)
[14] Kivshar Y and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic Press)
[15] Deng Y X, Tu C H and L? F Y 2009 Acta Phys. Sin. 58 3173 (in Chinese)
[16] Zhao L, Sui Z, Zhu Q H, Zhang Y and Zuo Y L 2009 Acta Phys. Sin. 58 4731 (in Chinese)
[17] Hasegawa A 1989 Optical Solitons in Fibers (Berlin: Springer-Verlag)
[18] Dodd R K, Eilbeck J C, Gibbon J D and Morris H C 1982 Solitons and Nonlinear Wave Equations (New York: Academic Press)
[19] Pitaevskii L P and Stringari S 2003 Bose-Einstein Condensation (Oxford: Oxford University Press).
[20] Scott A 1999 Nonlinear Science: Emergence and Dynamics of Coherent Structures (Vol. 1) (Oxford: Oxford University Press)
[21] Malomed B A, Mihalache D, Wise F and Torner L 2005 J. Opt. B 7 R53
[22] El G A, Gammal A and Kamchatnov A M 2006 Phys. Rev. Lett. 97 180405
[23] Kruglov V I, Peacock A C and Harvey J D 2005 Phys. Rev. E 71 056619
[24] Xu S L, Liang J C and Yi L 2010 Commun. Theor. Phys. 53 259
[25] Yan Z Y 2007 Phys. Scr. 75 320
[26] Yan Z Y 2007 Constructive Theory and Applications of Complex Nonlinear Waves ( Beijing: Science Press)
[27] Yan Z Y and Konotop V V 2009 Phys. Rev. E 80 036607
[28] Gao Y and Lou S Y 2009 Commun. Theor. Phys. 52 1031
[29] Hu Y H and Ma Z Y 2007 Chaos Solitons. Fract. 34 482
[30] Wu X F, Zhu J M and Ma Z Y 2005 Chin. Phys. 14 2395
[31] Ma Z Y and Zheng C L 2006 Chin. Phys. 15 45
[32] Ma Z Y 2007 Chin. Phys. 16 1848
[33] Ma Z Y 2007 Appl. Math. Comput. 194 67
[34] Ma S H, Fang J P and Ren Q B 2010 Acta Phys. Sin. 59 4420 (in Chinese)
[35] Ma S H, Fang J P and Zheng C L 2008 Chin. Phys. B 17 2767
[1] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[2] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[3] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[4] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[5] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[6] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[7] Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation
Haifeng Wang(王海峰), Yufeng Zhang(张玉峰). Chin. Phys. B, 2020, 29(4): 040501.
[8] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[9] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[10] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[11] Soliton excitations and interaction in alpha helical protein with interspine coupling in modified nonlinear Schrödinger equation
Ming-Ming Li(李明明), Cheng-Lai Hu(胡成来), Jun Wu(吴俊), Xian-Jing Lai(来娴静), Yue-Yue Wang(王悦悦). Chin. Phys. B, 2019, 28(12): 120502.
[12] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[13] Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background
Zhi-Jin Xiong(熊志进), Qing Xu(许庆), Liming Ling(凌黎明). Chin. Phys. B, 2019, 28(12): 120201.
[14] Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schrödinger equations
Zai-Dong Li(李再东), Yang-yang Wang(王洋洋), Peng-Bin He(贺鹏斌). Chin. Phys. B, 2019, 28(1): 010504.
[15] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
No Suggested Reading articles found!