Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010504    DOI: 10.1088/1674-1056/28/1/010504
GENERAL Prev   Next  

Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schrödinger equations

Zai-Dong Li(李再东)1,2, Yang-yang Wang(王洋洋)1, Peng-Bin He(贺鹏斌)3
1 Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China;
2 Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China;
3 School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  

Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schrödinger equations. As an example, some types of exact breather solutions are given analytically by adjusting the parameters. Moreover, the interesting fundamental problem is to clarify the formation mechanism of asymmetry breather solutions and how the particle number and energy exchange between the background and soliton ultimately form the breather solutions. Our results also show that the formation mechanism from breather to rogue wave arises from the transformation from the periodic total exchange into the temporal local property.

Keywords:  Akhmediev breather solution      Kuznetsov-Ma breather solution      rogue wave      nonuniform exchange  
Received:  25 September 2018      Revised:  06 November 2018      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61774001) and the Natural Science Foundation of Hunan Province, China (Grant No. 2017JJ2045).

Corresponding Authors:  Zai-Dong Li     E-mail:  lizd@hebut.edu.cn

Cite this article: 

Zai-Dong Li(李再东), Yang-yang Wang(王洋洋), Peng-Bin He(贺鹏斌) Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schrödinger equations 2019 Chin. Phys. B 28 010504

[1] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[2] Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[3] Sulem C and Sulem P 1993 Appl. Math. Sci. 3 102
[4] Bergé L 1998 Phys. Rep. 303 259
[5] Malomed B A, Mihalache D, Wise F and Torner L 2005 J. Opt. B: Quantum Semiclassical Opt. 7 R53
[6] Chabchoub A, Hoffmann N P and Akhmediev N 2011 Phys. Rev. Lett. 106 204502
[7] Chabchoub A, Hoffmann N P and Akhmediev N 2012 J. Geophys. Res. 117 C00J03
[8] Chabchoub A, Hoffmann N, Onorato M and Akhmediev N 2012 Phys. Rev. X 2 011015
[9] Akhmediev N and Pelinovsky E 2010 Eur. Phys. J. Spec. Top. 185 1
[10] Pelinovsky E and Kharif C 2008 Extreme Ocean Waves (Berlin: Springer)
[11] Pitaevskii L and Stringari S 2016 Bose-Einstein Condensation and Superfluidity (Oxford: Oxford University Press)
[12] Zakharov V E and Shabat A B 1971 Zh. Eksp. Teor. Fiz 61 118
[13] Bailung H and Nakamura Y 1993 J. Plasma Phys. 50 231
[14] Ruderman M S 2010 Eur. Phys. J. Spec. Top. 185 57
[15] Moslem W M, Shukla P K and Eliasson B 2011 Euro. Phys. Lett. 96 25002
[16] Zeba I, Yahia M E, Shukla P K and Moslem W M 2012 Phys. Lett. A 376 2309
[17] Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F and Dudley J M 2012 Sci. Rep. 2 463
[18] Zhao F, Li Z D, Li Q Y, Wen L, Fu G S and Liu W M 2012 Ann. Phys. 327 2085
[19] Li Z D, Li Q Y, Xu T F and He P B 2016 Phys. Rev. E 94 042220
[20] Li Z D, Li Q Y and Liu W M 2017 J. Phys.: Conf. Ser. 827 012002
[21] He P B, Gu G N and Pan A L 2012 Eur. Phys. J. B 85 119
[22] Li Q Y, Zhao F, He P B and Li Z D 2015 Chin. Phys. B 24 037508
[23] Li Z D, Cui H, Li Q Y and He P B 2018 Ann. Phys. 388 390
[24] Yan Z 2010 Commun. Theor. Phys. 54 947
[25] Yan Z 2011 Phys. Lett. A 375 4274
[26] Yan Z and Dai C 2013 J. Opt. 15 064012
[27] Yan Z 2015 Appl. Math. Lett. 47 61
[28] Yan Z 2016 Appl. Math. Lett. 62 101
[29] Yan Z 2017 Chaos 27 053117
[30] Wen Z and Yan Z 2017 Chaos 27 033118
[31] Zhang G, Yan Z, Wen X Y and Chen Y 2017 Phys. Rev. E 95 042201
[32] Manakov S V 1974 Sov. Phys. JETP 38 248
[33] Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
[34] Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
[35] Ling L and Liu Q P 2010 J. Phys. A 43 434023
[36] Ling L, Zhao L C and Guo B 2016 Commun. Nonlinear Sci. Numer. Simul. 32 285
[37] Ling L, Zhao L C and Guo B 2015 Nonlinearity 28 3243
[38] Zhao L C, Ling L, Yang Z Y and Liu J 2015 Commun. Nonlinear Sci. Numer. Simul. 23 21
[39] Ling L, Feng B F and Zhu Z 2016 Physica D 327 13
[40] Feng B F, Ling L and Zhu Z 2016 Phys. Rev. E 93 052227
[41] Ling L M, Feng B F and Zhu Z N 2018 Nonlinear Anal. Real World Appl. 40 185
[42] Park Q H and Shin H J 2000 Phys. Rev. E 61 3093
[43] Guo B, Ling L and Liu Q P 2013 Stud. Appl. Math. 130 317
[44] Wen X Y, Yang Y and Yan Z 2015 Phys. Rev. E 92 012917
[45] Lü X and Tian B 2012 Phys. Rev. E 85 026117
[46] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N and Dudley J M 2010 Nat. Phys. 6 790
[47] Yang J K 1997 Physica D 108 92
[48] He J S, Mei J and Li Y S 2007 Chin. Phys. Lett. 24 2157
[49] Dai C Q, Fan Y, Zhou G Q, Zheng J and Chen L 2016 Nonlinear Dyn. 86 999
[50] Liu C, Yang Z Y, Zhao L C and Yang W L 2014 Phys. Rev. A 89 055803
[51] Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 17 21497
[52] Karif C and Pelinovsky E 2003 Eur. J. Mech. B Fluids 22 603
[53] Karif C, Pelinovsky E and Slunyaev A 2009 Rogue Waves in Waters of Infinite and Finite Depths (Berlin: Springer) p. 91
[54] He J, Xu S and Porsezian K 2012 Phys. Rev. E 86 066603
[55] Ling L and Zhao L C 2015 Phys. Rev. E 92 022924
[56] Guo B and Ling L M 2011 Chin. Phys. Lett. 28 110202
[57] Ankiewicz A, Devine N and Akhmediev N 2009 Phys. Lett. A 373 3997
[58] Ruban V, Kodama Y, Ruderman M, Dudley J, Grimshaw R, McClintock P V E, Onorato M, Kharif C, Pelinovsky E, Soomere T, Lindgren G, Akhmediev N, Slunyaev A, Solli D, Ropers C, Jalali B, Dias F and Osborne A 2010 Eur. Phys. J. Special Topics 185 5
[59] Höhmann R, Kuhl U, Stöckmann H J, Kaplan L and Heller E J 2010 Phys. Rev. Lett. 104 093901
[60] Erkintalo M, Genty G and Dudley J M 2009 Opt. Lett. 34 2468
[61] Hasegawa A 1984 Opt. Lett. 9 288
[62] Akhmediev N N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[63] Akhmediev N N 2001 Nature 413 267
[64] Van S G, Emplit P and Haelterman M 2001 Phys. Rev. Lett. 87 033902
[65] Mussot A, Kudlinski A, Droques M, Szriftgiser P and Akhmediev N 2014 Phys. Rev. X 4 011054
[1] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[2] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[3] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[4] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[5] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[6] Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation
Haifeng Wang(王海峰), Yufeng Zhang(张玉峰). Chin. Phys. B, 2020, 29(4): 040501.
[7] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[8] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[9] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[10] Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrödinger equations
Zai-Dong Li(李再东), Cong-Zhe Huo(霍丛哲), Qiu-Yan Li(李秋艳), Peng-Bin He(贺鹏斌), Tian-Fu Xu(徐天赋). Chin. Phys. B, 2018, 27(4): 040505.
[11] A more general form of lump solution, lumpoff, and instanton/rogue wave solutions of a reduced (3+1)-dimensional nonlinear evolution equation
Panfeng Zheng(郑攀峰), Man Jia(贾曼). Chin. Phys. B, 2018, 27(12): 120201.
[12] Interactions of ion acoustic multi-soliton and rogue wave with Bohm quantum potential in degenerate plasma
M S Alam, M G Hafez, M R Talukder, M Hossain Ali. Chin. Phys. B, 2017, 26(9): 095203.
[13] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[14] Soliton and rogue wave solutions of two-component nonlinear Schrödinger equation coupled to the Boussinesq equation
Cai-Qin Song(宋彩芹), Dong-Mei Xiao(肖冬梅), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2017, 26(10): 100204.
[15] Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations
Wang Xin (王鑫), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(7): 070203.
No Suggested Reading articles found!