Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 120201    DOI: 10.1088/1674-1056/ab50fc
GENERAL   Next  

Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background

Zhi-Jin Xiong(熊志进)1, Qing Xu(许庆)2, Liming Ling(凌黎明)2
1 School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China;
2 School of Mathematics, South China University of Technology, Guangzhou 510640, China
Abstract  We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrödinger equation. As the plane wave background undergoes unitary transformation SU(3), we obtain the general nonzero background and study its modulational instability by the linear stability analysis. On the basis of this background, we study the dynamics of one-dark soliton and two-dark-soliton phenomena, which are different from the dark solitons studied before. Furthermore, we use the numerical method for checking the stability of the one-dark-soliton solution. These results further enrich the content in nonlinear Schrödinger systems, and require more in-depth studies in the future.
Keywords:  dark soliton      three-component nonlinear Schrödinger equations      general nonzero background  
Received:  29 August 2019      Revised:  09 October 2019      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11771151), the Guangdong Natural Science Foundation of China (Grant No. 2017A030313008), the Guangzhou Science and Technology Program of China (Grant No. 201904010362), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2019MS110).
Corresponding Authors:  Liming Ling     E-mail:  linglm@scut.edu.cn

Cite this article: 

Zhi-Jin Xiong(熊志进), Qing Xu(许庆), Liming Ling(凌黎明) Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background 2019 Chin. Phys. B 28 120201

[34] Zhang H Q and Wang Y 2018 Nonlinear Dyn. 91 1921
[1] Gerdjikov V S 2009 AIP Conf. Proc. 1186 15
[35] Zhang H Q and Yuan S S 2017 Commun. Nonlinear Sci. Numer. Simul. 51 124
[2] Zhang Y, Nie X J and Zha Q L 2014 Phys. Lett. A 378 191
[3] Kurihara S 1981 Phys. B+C 107 413
[4] Du Z, Tian B, Chai H P and Yuan Y Q 2019 Commun. Nonlinear Sci. Numer. Simul. 67 49
[5] Zhao L C, Yang Z Y and Yang W L 2019 Chin. Phys. B 28 010501
[6] Liu Y K, Li B 2017 Chin. Phys. Lett. 34 010202
[7] Wang X B and Han B 2019 Europhys. Lett. 126 15001
[8] Zhao L C, Ling L M, Qi J W, Yang Z Y and Yang W L 2017 Commun. Nonlinear Sci. Numer. Simul. 49 39
[9] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[10] Wang Z H, Cherkasskii M, Kalinikos B A, Carr L D and Wu M Z 2014 New J. Phys. 16 053048
[11] Guo B L and Wang Y F 2016 Wave Motion 67 47
[12] Li H, Wang D N and Cheng Y S 2009 Chaos Solitons Fractals 39 1988
[13] Liu X X, Pu H, Xiong B, Liu W M and Gong J B 2009 Phys. Rev. A 79 013423
[14] Ling L M and Zhao L C 2015 Phys. Rev. E 92 022924
[15] Qu C L, Pitaevskii L P and Stringari S 2016 Phys. Rev. Lett. 116 160402
[16] Yu W T, Ekici M, Mirzazadeh M, Zhou Q, Liu W J 2018 Optik 165 341
[17] Frantzeskakis D J 2010 J. Phys. A: Math. Theor. 43 213001
[18] Ohta Y, Wang D S and Yang J K 2011 Stud. Appl. Math. 127 345
[19] Mahalingam A and Porsezian K 2001 Phys. Rev. E 64 046608
[20] Priya N V and Senthilvelan M 2016 Commun. Nonlinear Sci. Numer. Simul. 36 366
[21] Ling L M, Zhao L C and Guo B L 2015 Nonlinearity 28 3243
[22] Conforti M, Baronio F and Degasperis A 2011 Physica D: Nonlinear Phenomena240 1362
[23] Li S Q 2012 Third Global Congress on Intelligent Systems (Wuhan, China 6-8 November 2012) p. 352
[24] Zhao X S, Li L and Xu Z Y 2009 Phys. Rev. A 79 043827
[25] Gadzhimuradov T A, Abdullaev G O and Agalarov A M 2017 Nonlinear Dyn. 89 2695
[26] Huang Q M 2019 Appl. Math. Lett. 93 29
[27] Su J J and Gao Y T 2017 Superlattices Microstruct. 104 498
[28] Lan Z Z, Gao B and Du M J 2018 Chaos Solitons Fractals. 111 169
[29] Li L, Zhao X S and Xu Z Y 2008 Phys. Rev. A 78 063833
[30] Shin H J 2005 J. Phys. A: Math. Gen. 38 3307
[31] Lan Y, Zhao L C and Luo X W 2019 Commun. Nonlinear Sci. Numer. Simul. 70 334
[32] Matveev V B 2007 Philos. Trans.: Math. Phys. Eng. Sci. 366 837
[33] Zhao L C and Ling L M 2016 J. Opt. Soc. Am. B 33 850
[34] Zhang H Q and Wang Y 2018 Nonlinear Dyn. 91 1921
[35] Zhang H Q and Yuan S S 2017 Commun. Nonlinear Sci. Numer. Simul. 51 124
[1] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[2] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[3] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[4] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[5] Propagation characteristics of parallel dark solitons in silicon-on-insulator waveguide
Zhen Liu(刘振), Weiguo Jia(贾维国), Yang Wang(汪洋), Hongyu Wang(王红玉), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(1): 014203.
[6] Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates
Lang Zheng(郑浪), Yi-Cai Zhang(张义财), Chao-Fei Liu(刘超飞). Chin. Phys. B, 2019, 28(11): 116701.
[7] Generating periodic interference in Bose-Einstein condensates
Shen-Tong Ji(冀慎统), Yuan-Sheng Wang(王元生), Yue-E Luo(罗月娥), Xue-Shen Liu(刘学深). Chin. Phys. B, 2016, 25(9): 090303.
[8] Evolution of dark solitons in the presence of Ramangain and self-steepening effect
Yu Yu (于宇), Jia Wei-Guo (贾维国), Yan Qing (闫青), Menke Neimule (门克内木乐), Zhang Jun-Ping (张俊萍). Chin. Phys. B, 2015, 24(8): 084210.
[9] Current-induced magnetic soliton solutions in a perpendicular ferromagnetic anisotropy nanowire
Li Qiu-Yan (李秋艳), Zhao Fei (赵飞), He Peng-Bin (贺鹏斌), Li Zai-Dong (李再东). Chin. Phys. B, 2015, 24(3): 037508.
[10] Spatial weak-light ring soliton in self-assembled quantum dots
Chen Qiu-Cheng (陈秋成). Chin. Phys. B, 2014, 23(12): 124212.
[11] Bound states of spatial optical dark solitons in nonlocal media
Ou-Yang Shi-Gen(欧阳世根), Hu Wei(胡巍), and Guo Qi(郭旗) . Chin. Phys. B, 2012, 21(4): 040505.
[12] Dark soliton in one-dimensional Bose–Einstein condensate under a periodic perturbation of trap
Liu Chao-Fei(刘超飞),Hu Ke(胡柯),Hu Tao(胡涛),and Tang Yi(唐翌) . Chin. Phys. B, 2011, 20(1): 010309.
[13] Bright and dark soliton solutions in growing Bose—Einstein condensates
Song Wei-Wei(宋伟为), Li Qiu-Yan(李秋艳), Li Zai-Dong(李再东), and Fu Guang-Sheng(傅广生). Chin. Phys. B, 2010, 19(7): 070503.
[14] Control of soliton characteristics of the condensate by an arbitrary x-dependent external potential
Yang Ru-Shu(杨如曙), Yao Chun-Mei(姚春梅), and Chen Ri-Xin(陈日新). Chin. Phys. B, 2009, 18(9): 3736-3741.
[15] Effects of localized impurity on a dark soliton in a Bose--Einstein condensate with an external magnetic trap
Li Hong(李宏), and Wang Dong-Ning(王东宁). Chin. Phys. B, 2009, 18(7): 2659-2666.
No Suggested Reading articles found!