Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 124701    DOI: 10.1088/1674-1056/ab53cf
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow

Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝)
Ocean College, Zhejiang University, Zhoushan 316000, China
Abstract  Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schrödinger equation (NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis method. The gravity waves are influenced by a linear shear flow, which is composed of a uniform flow and a shear flow with constant vorticity. The modulational instability (MI) of the NLSE is analyzed, and the region of the MI for gravity waves (the necessary condition for existence of freak waves) is identified. In this work, the uniform background flows along or against wave propagation are referred to as down-flow and up-flow, respectively. Uniform up-flow enhances the MI, whereas uniform down-flow reduces it. Positive vorticity enhances the MI, while negative vorticity reduces it. Hence, the influence of positive (negative) vorticity on MI can be balanced out by that of uniform down (up) flow. Furthermore, the Peregrine breather solution of the NLSE is applied to freak waves. Uniform up-flow increases the steepness of the free surface elevation, while uniform down-flow decreases it. Positive vorticity increases the steepness of the free surface elevation, whereas negative vorticity decreases it.
Received:  09 September 2019      Revised:  18 October 2019      Accepted manuscript online: 
PACS:  92.10.Hm (Ocean waves and oscillations)  
  47.35.Bb (Gravity waves)  
  47.35.De (Shear waves)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFC1401404 and 2017YFA0604102) and the National Natural Science Foundation of China (Grant No. 41830533).
Corresponding Authors:  Anzhou Cao, Jinbao Song     E-mail:  caoanzhou@zju.edu.cn;songjb@zju.edu.cn

Cite this article: 

Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝) A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow 2019 Chin. Phys. B 28 124701

[1] Davey A and Stewartson K 1974 Proc. R. Soc. Lond. A 338 101
[2] Turpin F M, Benmoussa C and Mei C C 1983 J. Fluid Mech. 132 1
[3] Djordjevic V D and Redelopp L G 1978 Z. Angew. Math. Phys. 29 950
[4] Peregrine D H 1976 Adv. Appl. Mech. 16 9
[5] Longuet-Higgins M S and Stewart R W 1961 J. Fluid Mech. 10 529
[6] Kantardgi I 1995 Coast Eng. 26 195
[7] Maciver R D, Simons R R and Thomas G P 2006 J. Geophys. Res. 111 C03009
[8] Choi W 2009 Math. Comput. Simul. 80 29
[9] Ma Y X, Dong G H, Perlin M, Ma X Z, Wang G and Xu J 2010 J. Fluid Mech. 661 108
[10] Ma Y X, Ma X Z, Perlin M and Dong G H 2013 Phys. Fluids 25 114109
[11] Sedletsky Y V 2005 Phys. Lett. A 343 293
[12] Toffoli A, Waseda T, Houtani H, Cavaleri L, Greaves D and Onorato M 2015 J. Fluid Mech. 769 277
[13] Thomas R, Kharif C and Manna M 2012 Phys. Fluids 24 127102
[14] Smith R 1976 J. Fluid Mech. 77 417
[15] Henderson K L, Peregrine D H and Dold J W 1999 Wave Motion 29 341
[16] Dysthe K B and Trulsen K 1999 Phys. Scr. T82 48
[17] Ma Y C 1979 Stud. Appl. Math. 60 43
[18] Peregrine D H 1983 Austral. Math. Soc. Ser. B 25 16
[19] Tao Y S, He J S and Porsezian K 2013 Chin. Phys. B 22 074210
[20] Kharif C and Pelinovsky E 2003 Eur. J. Mech. B Fluids 22 603
[21] Liao B, Dong G, Ma Y and Gao J L 2017 Phys. Rev. E. 96 043111
[22] Touboul J, Charl, J, Rey V and Belibassakis K 2016 Coast. Eng. 116 77
[23] Quinn B E, Toledo Y and Shrira V I 2017 Ocean Modell. 112 33
[24] Weng S C and Yu Z W 1985 Wave Theory Calculation Principle (Beijing: Sci. Press) Chap 1 p. 31 (in Chinese)
[25] Song S Y, Wang J and Meng J M 2010 Acta Phys. Sin. 59 1123 (in Chinese)
[26] Zhao L C and Ling L M 2016 J. Opt. Soc. Am. B 33 850
[27] Ling L M, Zhao L C, Yang Z Y and Guo B L 2017 Phys. Rev. E 96 022211
[28] Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M and Wabnitz S 2014 Phys. Rev. Lett. 113 034101
[29] Baronio F, Chen S H, Grelu P, Wabnitz S and Conforti M 2015 Phys. Rev. A 91 033804
[30] Xie T, Shen T, William P, Chen W and Kuang H L 2010 Chin. Phys. B 19 054102
[31] Xie T, Zou G H, William P, Kuang H L and Chen W 2010 Chin. Phys. B 19 059201
[32] Didenkulova I I, Nikolkina I F and Pelinovsky E N 2013 JETP Lett. 97 194
[1] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[2] Effective dielectric constant model of electromagnetic backscattering from stratified air-sea surface film-sea water medium
Tao Xie(谢涛), William Perrie, He Fang(方贺), Li Zhao(赵立), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2017, 26(5): 054102.
[3] Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model
Tao Xie(谢涛), William Perrie, Shang-Zhuo Zhao(赵尚卓), He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2016, 25(7): 074102.
[4] Electromagnetic backscattering from one-dimensional drifting fractal sea surface I: Wave-current coupled model
Tao Xie(谢涛), Shang-Zhuo Zhao(赵尚卓), William Perrie, He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2016, 25(6): 064101.
[5] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[6] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng (陈耀登), Yang Hong-Wei (杨红卫), Gao Yu-Fang (高玉芳), Yin Bao-Shu (尹宝树), Feng Xing-Ru (冯兴如). Chin. Phys. B, 2015, 24(9): 090205.
[7] Effect of oceanic current on typhoon-wave modeling in the East China Sea
Cui Hong (崔红), He Hai-Lun (何海伦), Liu Xiao-Hui (刘晓辉), Li Yi (李熠). Chin. Phys. B, 2012, 21(10): 109201.
[8] Forced solitary Rossby waves under the influence of slowly varying topography with time
Yang Hong-Wei(杨红卫), Yin Bao-Shu(尹宝树), Yang De-Zhou(杨徳周), and Xu Zhen-Hua(徐振华) . Chin. Phys. B, 2011, 20(12): 120203.
[9] Investigation on the Doppler shifts induced by 1-D ocean surface wave displacements by the first order small slope approximation theory: comparison of hydrodynamic models
Wang Yun-Hua(王运华), Zhang Yan-Min(张彦敏), and Guo Li-Xin(郭立新). Chin. Phys. B, 2010, 19(7): 074103.
[10] Study of scattering from time-varying Gerstners sea surface using second-order small slope approximation
Zhang Yan-Min(张彦敏), Wang Yun-Hua(王运华), and Guo Li-Xin(郭立新). Chin. Phys. B, 2010, 19(5): 054103.
[11] A two scale nonlinear fractal sea surface model in a one dimensional deep sea
Xie Tao(谢涛),Zou Guang-Hui(邹光辉), William Perrie, Kuang Hai-Lan(旷海兰), and Chen Wei(陈伟). Chin. Phys. B, 2010, 19(5): 059201.
[12] Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface
Xie Tao(谢涛), He Chao(何超), William Perrie, Kuang Hai-Lan(旷海兰), Zou Guang-Hui(邹光辉), and Chen Wei(陈伟). Chin. Phys. B, 2010, 19(2): 024101.
[13] Effects of orientation and shape of holes on the band gaps in water waves over periodically drilled bottoms
Zhong Lan-Hua(钟兰花), Wu Fu-Gen(吴福根), and Zhong Hui-Lin(钟会林). Chin. Phys. B, 2010, 19(2): 020301.
[14] Numerical method of studying nonlinear interactions between long waves and multiple short waves
Xie Tao(谢涛), Kuang Hai-Lan(旷海兰), William Perrie, Zou Guang-Hui(邹光辉), Nan Cheng-Feng(南撑峰), He Chao(何超), Shen Tao(沈涛), and Chen Wei(陈伟). Chin. Phys. B, 2009, 18(7): 3090-3098.
[15] Modified KdV equation for solitary Rossby waves with $\beta$ effect in barotropic fluids
Song Jian(宋健) and Yang Lian-Gui(杨联贵). Chin. Phys. B, 2009, 18(7): 2873-2877.
No Suggested Reading articles found!