Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 026301    DOI: 10.1088/1674-1056/21/2/026301
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Thermal conductance in a two-slit quantum waveguide

Nie Liu-Ying(聂六英), Li Chun-Xian(李春先), Zhou Xiao-Ping(周晓萍), Wang Cheng-Zhi(王成志), and Cheng Fang(程芳)
School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China
Abstract  Using the scattering-matrix method, we investigate the thermal conductance in a two-slit quantum waveguide at low temperature. The results show that the total thermal conductance decreases monotonically with temperature increasing. Moreover, we find that the behaviours of the thermal conductance versus temperature are different for different types of slits.
Keywords:  acoustic phonon transport      thermal conductance      quantum wire  
Received:  21 May 2011      Revised:  30 August 2011      Accepted manuscript online: 
PACS:  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  44.10.+i (Heat conduction)  
  73.23.Ad (Ballistic transport)  
Fund: Project supported by the Natural Science Foundation of Hunan Province of China (Grant No. 09JJ5005) and the National Natural Science Foundation of China (Grant Nos. 10947134 and 11004017).
Corresponding Authors:  Nie Liu-Ying,nieliuying@163.com     E-mail:  nieliuying@163.com

Cite this article: 

Nie Liu-Ying(聂六英), Li Chun-Xian(李春先), Zhou Xiao-Ping(周晓萍), Wang Cheng-Zhi(王成志), and Cheng Fang(程芳) Thermal conductance in a two-slit quantum waveguide 2012 Chin. Phys. B 21 026301

[1] Lee S M, Cahill D G and Venkatasubramanian R 1997 Appl. Phys. Lett. bf 70 2957
[2] Chen G 1998 Phys. Rev. B 57 14958
[3] Bies W E, Radtke R J and Ehrenreich H 2000 J. Appl. Phys. 88 1498
[4] Simkin M V and Mahan G D 2000 Phys. Rev. Lett. 84 927
[5] Yu X Y, Chen G, Verma A and Smith J S 1995 Appl. Phys. Lett. bf 67 3554
[6] Balandin A and Wang K L 1998 Phys. Rev. B 58 1544
[7] Philip J, Hess P, Feygelson T, Butler J E, Chattopadhyay S, Chen K H and Chen L C 2003 J. Appl. Phys. 93 2164
[8] Yang P, Wu Y S, Xu H F, Xu X X, Zhang L Q and Li P 2011 Acta Phys. Sin. 60 066601 (in Chinese)
[9] Tighe T S, Worlock J M and Roukes M L 1997 Appl. Phys. Lett. 70 2687
[10] Chen G 2000 Int. J. Thermal Sci. 39 471
[11] Chen G and Zeng T 2001 Microstructure Thermophysical Engineering 5 71
[12] Glavin B A 2001 Phys. Rev. Lett. 86 4318
[13] Volz S, Lemonnier D and Saulnier J B 2001 Microstructure Thermophysical Engineering 5 191
[14] Zou J and Balandin A 2001 J. Appl. Phys. 89 2932
[15] Huang W Q, Chen K Q, Shuai Z, Wang L L and Hu W Y 2005 Phys. Lett. A 336 245
[16] Ye F Q, Li K M and Peng X F 2011 Acta Phys. Sin. 60 036806 (in Chinese)
[17] Li H B and Li Z 2010 Chin. Phys. B 19 054401
[18] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[19] Hou Q W, Cao B Y and Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese)
[20] Wang J L, Xiong G P, Gu M, Zhang X and Liang J 2009 Acta Phys. Sin. 58 4536 (in Chinese)
[21] Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232
[22] Schwab K, Henriksen E A, Worlock J M and Roukes M L 2000 it Nature (London) 404 974
[23] Santamore D H and Cross M C 2001 Phys. Rev. Lett. 87 115502
[24] Santamore D H and Cross M C 2001 Phys. Rev. B 63 184306
[25] Li W X, Chen K Q, Duan W H, Wu J and Gu B L 2003 J. Phys. D: Appl. Phys. 36 3027
[26] Chang C M and Geller M R 2005 Phys. Rev. B 71 125304
[27] Chen K Q, Li W X, Duan W H, Shuai Z and Gu B L 2005 Phys. Rev. B 72 045422
[28] Nie L Y, Wang L L, Zhao L H, Huang W Q, Tang L M, Wang X J and Chen K Q 2006 Phys. Lett. A 359 234
[29] Li W X, Chen K Q, Duan W H, Wu J and Gu B L 2004 J. Phys.: Condens. Matter 16 5049
[30] Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y and Zou B S 2005 J. Appl. Phys. 98 093524
[31] Tang L M, Wang L L, Chen K Q, Huang W Q and Zou B S 2006 it Appl. Phys. Lett. 88 163505
[32] Yang P, Sun Q F, Guo H and Hu B B 2007 Phys. Rev. B bf 75 235319
[33] Peng X F, Chen K Q, Zou B S and Zhang Y 2007 Appl. Phys. Lett. 90 193502
[34] Xie F, Chen K Q, Wang Y G and Zhang Y 2008 J. Appl. Phys. 103 084501
[35] Xie F, Chen K Q, Wang Y G and Zhang Y 2008 J. Appl. Phys. bf 104 054312
[36] Peng X F, Chen K Q, Wan Q, Zou B S and Duan W H 2010 Phys. Rev. B 81 195317
[1] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[2] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[3] Delta-doped quantum wire tunnel junction for highly concentrated solar cells
Ali Bahrami, Mahyar Dehdast, Shahram Mohammadnejad, Habib Badri Ghavifekr. Chin. Phys. B, 2019, 28(4): 046102.
[4] General theories and features of interfacial thermal transport
Hangbo Zhou(周杭波), Gang Zhang(张刚). Chin. Phys. B, 2018, 27(3): 034401.
[5] Thermal properties of transition-metal dichalcogenide
Xiangjun Liu(刘向军), Yong-Wei Zhang(张永伟). Chin. Phys. B, 2018, 27(3): 034402.
[6] Spin texturing in quantum wires with Rashba and Dresselhaus spin-orbit interactions and in-plane magnetic field
B Gisi, S Sakiroglu, İ Sokmen. Chin. Phys. B, 2016, 25(1): 017103.
[7] Material properties dependent on the thermal transport in a cylindrical nanowire
Zhang Yong (张勇), Xie Zhong-Xiang (谢忠祥), Deng Yuan-Xiang (邓元祥), Yu Xia (喻霞), Li Ke-Min (李科敏). Chin. Phys. B, 2015, 24(12): 126302.
[8] Spin texturing in a parabolically confined quantum wire with Rashba and Dresselhaus spin–orbit interactions
S. Saríkurt, S. Şakiroğlu, K. Akgüngör, İ. Sökmen. Chin. Phys. B, 2014, 23(1): 017102.
[9] Mobility limited by cluster scattering in ternary alloy quantum wires
Zhang Heng (张恒), Yang Shao-Yan (杨少延), Liu Gui-Peng (刘贵鹏), Wang Jian-Xia (王建霞), Jin Dong-Dong (金东东), Li Hui-Jie (李辉杰), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国). Chin. Phys. B, 2014, 23(1): 017305.
[10] Dynamic electron transport theory for multiprobe mesoscopic structures
Quan Jun(全军), Tian Ying (田英), Zhang Jun(张军), and Shao Le-Xi(邵乐喜) . Chin. Phys. B, 2011, 20(7): 077201.
[11] Spin current and its heat effect in a multichannel quantum wire with Rashba spin–orbit coupling
Song Zhan-Feng(宋占锋), Wang Ya-Dong(王亚东), Shao Hui-Bin(邵慧彬), and Sun Zhi-Gang(孙志刚). Chin. Phys. B, 2011, 20(7): 077302.
[12] Band structure and absorption coefficient in GaN/AlGaN quantum wires
Yao Wen-Jie(姚文杰), Yu Zhong-Yuan(俞重远), and Liu Yu-Min(刘玉敏). Chin. Phys. B, 2010, 19(7): 077101.
[13] Tunneling conductance in quantum wire/insulator/dx2 -y2 + idxy mixed wave superconductor junctions
Wei Jian-Wen(魏健文). Chin. Phys. B, 2009, 18(10): 4479-4485.
[14] Electron transport for a laser-irradiated quantum channel with Rashba spin--orbit coupling
Zhao Hua(赵华), Liao Wen-Hu(廖文虎), and Zhou Guang-Hui(周光辉). Chin. Phys. B, 2007, 16(6): 1748-1752.
[15] Persistent spin current in a quantum wire with weak Dresselhaus spin--orbit coupling
Sheng Wei(盛威), Wang Yi(王羿), and Zhou Guang-Hui(周光辉). Chin. Phys. B, 2007, 16(2): 533-536.
No Suggested Reading articles found!