PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Thermal conductance in a two-slit quantum waveguide |
Nie Liu-Ying(聂六英)†, Li Chun-Xian(李春先), Zhou Xiao-Ping(周晓萍), Wang Cheng-Zhi(王成志), and Cheng Fang(程芳) |
School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China |
|
|
Abstract Using the scattering-matrix method, we investigate the thermal conductance in a two-slit quantum waveguide at low temperature. The results show that the total thermal conductance decreases monotonically with temperature increasing. Moreover, we find that the behaviours of the thermal conductance versus temperature are different for different types of slits.
|
Received: 21 May 2011
Revised: 30 August 2011
Accepted manuscript online:
|
PACS:
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
44.10.+i
|
(Heat conduction)
|
|
73.23.Ad
|
(Ballistic transport)
|
|
Fund: Project supported by the Natural Science Foundation of Hunan Province of China (Grant No. 09JJ5005) and the National Natural Science Foundation of China (Grant Nos. 10947134 and 11004017). |
Corresponding Authors:
Nie Liu-Ying,nieliuying@163.com
E-mail: nieliuying@163.com
|
Cite this article:
Nie Liu-Ying(聂六英), Li Chun-Xian(李春先), Zhou Xiao-Ping(周晓萍), Wang Cheng-Zhi(王成志), and Cheng Fang(程芳) Thermal conductance in a two-slit quantum waveguide 2012 Chin. Phys. B 21 026301
|
[1] |
Lee S M, Cahill D G and Venkatasubramanian R 1997 Appl. Phys. Lett. bf 70 2957
|
[2] |
Chen G 1998 Phys. Rev. B 57 14958
|
[3] |
Bies W E, Radtke R J and Ehrenreich H 2000 J. Appl. Phys. 88 1498
|
[4] |
Simkin M V and Mahan G D 2000 Phys. Rev. Lett. 84 927
|
[5] |
Yu X Y, Chen G, Verma A and Smith J S 1995 Appl. Phys. Lett. bf 67 3554
|
[6] |
Balandin A and Wang K L 1998 Phys. Rev. B 58 1544
|
[7] |
Philip J, Hess P, Feygelson T, Butler J E, Chattopadhyay S, Chen K H and Chen L C 2003 J. Appl. Phys. 93 2164
|
[8] |
Yang P, Wu Y S, Xu H F, Xu X X, Zhang L Q and Li P 2011 Acta Phys. Sin. 60 066601 (in Chinese)
|
[9] |
Tighe T S, Worlock J M and Roukes M L 1997 Appl. Phys. Lett. 70 2687
|
[10] |
Chen G 2000 Int. J. Thermal Sci. 39 471
|
[11] |
Chen G and Zeng T 2001 Microstructure Thermophysical Engineering 5 71
|
[12] |
Glavin B A 2001 Phys. Rev. Lett. 86 4318
|
[13] |
Volz S, Lemonnier D and Saulnier J B 2001 Microstructure Thermophysical Engineering 5 191
|
[14] |
Zou J and Balandin A 2001 J. Appl. Phys. 89 2932
|
[15] |
Huang W Q, Chen K Q, Shuai Z, Wang L L and Hu W Y 2005 Phys. Lett. A 336 245
|
[16] |
Ye F Q, Li K M and Peng X F 2011 Acta Phys. Sin. 60 036806 (in Chinese)
|
[17] |
Li H B and Li Z 2010 Chin. Phys. B 19 054401
|
[18] |
Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
|
[19] |
Hou Q W, Cao B Y and Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese)
|
[20] |
Wang J L, Xiong G P, Gu M, Zhang X and Liang J 2009 Acta Phys. Sin. 58 4536 (in Chinese)
|
[21] |
Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232
|
[22] |
Schwab K, Henriksen E A, Worlock J M and Roukes M L 2000 it Nature (London) 404 974
|
[23] |
Santamore D H and Cross M C 2001 Phys. Rev. Lett. 87 115502
|
[24] |
Santamore D H and Cross M C 2001 Phys. Rev. B 63 184306
|
[25] |
Li W X, Chen K Q, Duan W H, Wu J and Gu B L 2003 J. Phys. D: Appl. Phys. 36 3027
|
[26] |
Chang C M and Geller M R 2005 Phys. Rev. B 71 125304
|
[27] |
Chen K Q, Li W X, Duan W H, Shuai Z and Gu B L 2005 Phys. Rev. B 72 045422
|
[28] |
Nie L Y, Wang L L, Zhao L H, Huang W Q, Tang L M, Wang X J and Chen K Q 2006 Phys. Lett. A 359 234
|
[29] |
Li W X, Chen K Q, Duan W H, Wu J and Gu B L 2004 J. Phys.: Condens. Matter 16 5049
|
[30] |
Huang W Q, Chen K Q, Shuai Z, Wang L L, Hu W Y and Zou B S 2005 J. Appl. Phys. 98 093524
|
[31] |
Tang L M, Wang L L, Chen K Q, Huang W Q and Zou B S 2006 it Appl. Phys. Lett. 88 163505
|
[32] |
Yang P, Sun Q F, Guo H and Hu B B 2007 Phys. Rev. B bf 75 235319
|
[33] |
Peng X F, Chen K Q, Zou B S and Zhang Y 2007 Appl. Phys. Lett. 90 193502
|
[34] |
Xie F, Chen K Q, Wang Y G and Zhang Y 2008 J. Appl. Phys. 103 084501
|
[35] |
Xie F, Chen K Q, Wang Y G and Zhang Y 2008 J. Appl. Phys. bf 104 054312
|
[36] |
Peng X F, Chen K Q, Wan Q, Zou B S and Duan W H 2010 Phys. Rev. B 81 195317
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|