Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 077201    DOI: 10.1088/1674-1056/20/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dynamic electron transport theory for multiprobe mesoscopic structures

Quan Jun(全军)a), Tian Ying (田英)b), Zhang Jun(张军)a)c), and Shao Le-Xi(邵乐喜)a)
a School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048, China; b Center of Liberal Education, Zhanjiang Normal University, Zhanjiang 524048, Chinac  Shenzhen Institute of Advanced Integration Technology, Shenzhen 518055, China
Abstract  Using the linear response theory and random phase approximation, we develop a general dynamic electron transport theory for multiprobe mesoscopic structures in an arbitrarily time-dependent external field. In this case, the responses of the dynamic current, charge and internal potential to the external fields can be determined self-consistently. Without loss of generality, charge (current) conservation and gauge invariance under a potential shift are satisfied. As an example, we employ a quantum wire with a single barrier to discuss the response of the internal potential.
Keywords:  mesoscopic structure      linear response theory      electron transport      quantum wire  
Received:  30 December 2010      Revised:  06 March 2011      Accepted manuscript online: 
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.23.-b (Electronic transport in mesoscopic systems)  

Cite this article: 

Quan Jun(全军), Tian Ying (田英), Zhang Jun(张军), and Shao Le-Xi(邵乐喜) Dynamic electron transport theory for multiprobe mesoscopic structures 2011 Chin. Phys. B 20 077201

[1] Büttiker M 1993 J. Phys. Condens. Matter 5 9361
[2] Christen T and Büttiker M 1996 Phys. Rev. Lett. 77 143
[3] Büttiker M, Pretre A and Thomas H 1993 Phys. Rev. Lett. 70 4114
[4] Li X Q, Luo J Y, Yang Y G, Cui P and Yan Y J 2005 Phys. Rev. B 71 205304
[5] Li X Q and Su Z B 1996 Phys. Rev. B bf54 10807
[6] Ji Y H, Lei M S and Ouyang C Y 2002 Chin. Phys. bf11 163
[7] Büttiker M and Martin A M 2000 Phys. Rev. B bf61 2737
[8] Dong Z C 1999 Acta Phys. Sin. 48 511 (in Chinese)
[9] Li T C and Lu P S 2008 Phys. Rev. B bf77 85408
[10] Xu H and Song W P 2002 Acta Phys. Sin. bf51 1798 (in Chinese)
[11] Wang C and Zhang Y H 2006 Chin. Phys. bf15 2120
[12] Wang J, Guo H, Jose-Luis M, Wan C C, Taraschi G and Zheng Q R 1998 Phys. Rev. Lett. bf80 4277
[13] Pretre A, Thomas H and Büttiker M 1996 Phys. Rev. B bf54 8130
[1] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[2] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[3] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[4] Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy
J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣). Chin. Phys. B, 2020, 29(7): 077802.
[5] Bound in continuum states and induced transparency in mesoscopic demultiplexer with two outputs
Z Labdouti, T Mrabti, A Mouadili, E H El Boudouti, F Fethi, and B Djafari-Rouhani. Chin. Phys. B, 2020, 29(12): 127301.
[6] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[7] Delta-doped quantum wire tunnel junction for highly concentrated solar cells
Ali Bahrami, Mahyar Dehdast, Shahram Mohammadnejad, Habib Badri Ghavifekr. Chin. Phys. B, 2019, 28(4): 046102.
[8] Fundamental and progress of Bi2Te3-based thermoelectric materials
Min Hong(洪敏), Zhi-Gang Chen(陈志刚), Jin Zou(邹进). Chin. Phys. B, 2018, 27(4): 048403.
[9] Electron transport in Dirac and Weyl semimetals
Huichao Wang(王慧超), Jian Wang(王健). Chin. Phys. B, 2018, 27(10): 107402.
[10] TiO2 composite electron transport layers for planar perovskite solar cells by mixed spray pyrolysis with precursor solution incorporating TiO2 nanoparticles
Jiaqi Tian(田嘉琪), Hongcui Li(李红翠), Haiyue Wang(王海月), Bo Zheng(郑博), Yebin Xue(薛叶斌), Xizhe Liu(刘喜哲). Chin. Phys. B, 2018, 27(1): 018810.
[11] Electron transport properties of TiO2 shell on Al2O3 core in dye-sensitized solar cells
Dongmei Xie(解东梅), Xiaowen Tang(唐小文), Yuan Lin(林原), Pin Ma(马品), Xiaowen Zhou(周晓文). Chin. Phys. B, 2018, 27(1): 017804.
[12] Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour, Mohammad Khanzadeh. Chin. Phys. B, 2017, 26(9): 097203.
[13] Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants
Chang-Sheng Li(李长生), Lei Ma(马磊), Jie-Rong Guo(郭杰荣). Chin. Phys. B, 2017, 26(9): 097301.
[14] Lattice dynamics properties of chalcopyrite ZnSnP2: Density-functional calculations by using a linear response theory
You Yu(虞游), Yu-Jing Dong(董玉静), Yan-Hong Shen(沈艳红), Guo-Dong Zhao(赵国栋), Xiao-Lin Zheng(郑小林), Jia-Nan Sheng(盛佳南). Chin. Phys. B, 2017, 26(4): 046302.
[15] Photon-assisted electronic and spin transport through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm interferometer
Jiyuan Bai(白继元), Li Li(李立), Zelong He(贺泽龙), Shujiang Ye(叶树江), Shujun Zhao(赵树军), Suihu Dang(党随虎), Weimin Sun(孙伟民). Chin. Phys. B, 2017, 26(11): 117302.
No Suggested Reading articles found!