Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 026104    DOI: 10.1088/1674-1056/21/2/026104
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect of H impurity on misfit dislocation in Ni-based single-crystal superalloy: molecular dynamic simulations

Yu Tao(于涛)a)†, Xie Hong-Xian(谢红献)a)c), and Wang Chong-Yu(王崇愚)a)b)
a. Central Iron and Steel Research Institute, Beijing 100081, China;
b. Department of Physics, Tsinghua University, Beijing 100084, China;
c. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
Abstract  The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation. It includes the site preferences of H impurity in single crystals Ni and Ni3Al, the interaction between H impurity and the misfit dislocation and the effect of H impurity on the moving misfit dislocation. The calculated energies and simulation results show that the misfit dislocation attracts H impurity which is located at the $\gamma/\gamma'$ interface and Ni3Al and H impurity on the glide plane can obstruct the glide of misfit dislocation, which is beneficial to improving the mechanical properties of Ni based superalloys.
Keywords:  molecular dynamic      H impurity      misfit dislocation      Ni-based superalloy  
Received:  27 October 2011      Revised:  17 November 2011      Accepted manuscript online: 
PACS:  61.72.Lk (Linear defects: dislocations, disclinations)  
  02.70.Ns (Molecular dynamics and particle methods)  
  8540.Ry  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606402) and the National Natural Science Foundation of China (Grant No. 51071091).
Corresponding Authors:  Yu Tao,ytao012345@163.com     E-mail:  ytao012345@163.com

Cite this article: 

Yu Tao(于涛), Xie Hong-Xian(谢红献), and Wang Chong-Yu(王崇愚) Effect of H impurity on misfit dislocation in Ni-based single-crystal superalloy: molecular dynamic simulations 2012 Chin. Phys. B 21 026104

[1] Ross E W and Sims C T 1987 “Nickel-Base Alloys”, in: Sims C T, Stoloff N S and Hagel W C eds. Superalloy II (High Temperature Materials for Aerospace and Industrial Power) (New York: John Wiley & Sons) p. 97
[2] Pollock T M and Argon A S 1992 Acta Metall. Mater. 40 1
[3] Nabarro F R N and Villiers H L 1995 The Physics of Creep (London: Taylor & Francis)
[4] Anton D L in: Westbrook J H and Fleischer R L eds. 1994 Intermetallic Compounds (New York: Wiley) 2 3
[5] Mirkin I L and Kancheev O D 1967 Met. Sci. Heat Treat. 1-2 10
[6] Chen K, Zhao L R and John S Tse 2004 Mater. Sci. Eng. A 365 80
[7] Chen K, Zhao L R and John S Tse 2003 Mater. Sci. Eng. A 360 197
[8] Yashiro K, Naitob M and Tomitac Y 2002 Int. J. Mech. Sci. 44 1845
[9] Pollock T M and Argon A S 1992 Acta Metall. Mater. 40 1
[10] Socrate S and Parks D M 1993 Acta Metall. Mater. 41 2185
[11] Lahrman D F, Field R D, Darolia R D and Fraser H L 1988 Acta Metal. 36 1309
[12] Gabb T P, Draper S L, Hull D R and Nathal M V 1989 Mater. Sci. Eng. A 118 59
[13] Zhu T and Wang C Y 2005 Phys. Rev. B 72 014111
[14] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T and Harada H 2003 Acta Mater. 51 5073
[15] Xie H X, Wang C Y and Yu T 2009 Modelling Simul. Mater. Sci. Eng. 17 055007
[16] Beachem C D 1972 Metall. Trans. 3 437
[17] Lynch S P 1988 Acta Metall. 36 2639
[18] Birnbaum H K and Sofronis P 1994 Mater. Sci. Eng. A 176 191
[19] Angelo J E, Moody N R and Baskes M I 1995 Modelling Simul. Mater. Sci. Eng. 3 289
[20] Baskes M I, Sha X, Angelo J E and Moody N R 1997 Modelling Simul. Mater. Sci. Eng. 5 651
[21] Baskes M I, Angelo J E and Moody N R in: Thompson A W and Moody N R eds. 1996 Hydrogen Effects in Materials (Warrendale, PA: The Minerals, Metals and Materials Society) p. 77
[22] Wen M, Fukuyama S and Yokogawa K 2004 Phys. Rev. B 69 174108
[23] Wen M, Fukuyama S and Yokogawa K 2007 Phys. Rev. B 75 144110
[24] Zhu T, Wang C Y and Gan Y 2009 Acta Phys. Sin. 58 156 (in Chinese)
[25] Xie H X, Yu T and Liu B 2011 Acta Phy. Sin. 60 046104 (in Chinese)
[26] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (New York: Oxford University Press) p. 83
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[8] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[14] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[15] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
No Suggested Reading articles found!