Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 026401    DOI: 10.1088/1674-1056/21/2/026401
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Seeing time-reversal transmission characteristics through kinetic anti-ferromagnetic Ising chain

Chen Ying-Ming(陈英明)a)b) and Wang Bing-Zhong(王秉中)a)
a. Institute of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b. School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
Abstract  As an example of our new approach to complex near-field (NF) scattering of electromagnetic waves, the time-reversal (TR) transmission process on an NF current-element array is mapped to the statistical process on a kinetic Ising transmission chain. Equilibrium statistical mechanics and non-equilibrium Monte Carlo (MC) dynamics help us to find signal jamming, aging, annihilating, creating, and TR symmetry breaking on the chain with inevitable background noises; and these results are general in NF systems where complex electromagnetic scattering arises.
Keywords:  time-reversal      near-field scattering      symmetry breaking      temporal focusing  
Received:  17 June 2011      Revised:  19 August 2011      Accepted manuscript online: 
PACS:  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  05.10.Ln (Monte Carlo methods)  
  89.70.Hj (Communication complexity)  
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100185110021) and the National Natural Science Foundation of China (Grant No. 61071031).
Corresponding Authors:  Wang Bing-Zhong,bzwang@uestc.edu.cn     E-mail:  bzwang@uestc.edu.cn

Cite this article: 

Chen Ying-Ming(陈英明) and Wang Bing-Zhong(王秉中) Seeing time-reversal transmission characteristics through kinetic anti-ferromagnetic Ising chain 2012 Chin. Phys. B 21 026401

[1] Pohl D W, Denk W and Lanz M 1984 Appl. Phys. Lett. 44 651
[2] Dyba M and Hell S W 2002 Phys. Rev. Lett. 88 163901
[3] Esteban R, Vogelgesang R and Kern K 2007 Phys. Rev. B 75 195410
[4] Lacharmoise P D, Tognalli N G, Go ni A R, Alonso M I, Fainstein A, Cole R M, Baumberg J J, Garcia de Abajo J and Bartlett P N 2008 Phys. Rev. B 78 125410
[5] Olmon R L, Rang M, Krenz P M, Lail B A, Saraf L V, Boreman G D and Raschke M B 2010 Phys. Rev. Lett. 105 167403
[6] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature (London) 391 667
[7] Robles P, Claro F and Rojas R 2005 Phys. Rev. B 71 195407
[8] Yannopapas V and Vitanov N V 2009 Phys. Rev. B 80 035410
[9] Khanikaev A B, Mousavi S H, Shvets G and Kivshar Y S 2010 Phys. Rev. Lett. 105 126804
[10] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[11] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[12] Katko A R, Gu S, Barrett J P, Popa B I, Shvets G and Cummer S A 2010 Phys. Rev. Lett. 105 123905
[13] Carminati R, Saenz J J, Greffet J J and Nieto-Vesperinas M 2000 Phys. Rev. A 62 012712
[14] Lerosey G, Rosny J, Tourin A and Fink M 2007 Science 23 1120
[15] Bartal G, Lerosey G and Zhang X 2009 Phys. Rev. B 79 201103(R)
[16] Ge G D, Wang B Z, Huang H Y and Zheng G 2009 Acta Phys. Sin. 58 8249 (in Chinese)
[17] Moharam M G, Pommet D A and Grann E B 1995 J. Opt. Soc. Am. A 12 1077
[18] Hafner C 1990 Generalized Multiple Multipole Techniques for Computational Electromagnetics (Boston: Artech)
[19] Sullivan D M 2000 Electromagnetic Simulation Using the FDTD Method (New York: IEEE Press Series)
[20] Lo W S and Pelcovits R A 1990 Phys. Rev. A 42 7471
[21] Sides S W, Rikvold P A and Novotny M A 1998 Phys. Rev. Lett. 81 834
[22] Ma Y Q, Liu J W and Figueiredo W 1998 Phys. Rev. E 57 3625
[23] Bayram D, Osman C and Mustafa K 2010 Chin. Phys. B 19 050518
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[3] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[4] Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation
Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Tong Liu(刘桐), Xiaohui Song(宋小会), Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Luhong Su(苏鹭红), He Zhang(张贺), Yanjing Du(杜燕京), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(10): 100309.
[5] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[6] A hybrid method of solving near-zone composite eletromagnetic scattering from targets and underlying rough surface
Xi-Min Li(李西敏), Jing-Jing Li(李晶晶), Qian Gao(高乾), Peng-Cheng Gao(高鹏程). Chin. Phys. B, 2020, 29(2): 024202.
[7] Spurious symmetry-broken phase in a bidirectional two-lane ASEP with narrow entrances
Bo Tian(田波), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬), Bin Jia(贾斌). Chin. Phys. B, 2017, 26(2): 020503.
[8] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
Mohsen Yarmohammadi, Malek Zareyan. Chin. Phys. B, 2016, 25(6): 068105.
[9] Statistical physics of hard combinatorial optimization:Vertex cover problem
Zhao Jin-Hua (赵金华), Zhou Hai-Jun (周海军). Chin. Phys. B, 2014, 23(7): 078901.
[10] Split-ring-based metamaterial for far-field subwavelength focusing based on time reversal
Huang Hai-Yan (黄海燕), Ding Shuai (丁帅), Wang Bing-Zhong (王秉中), Zang Rui (臧锐). Chin. Phys. B, 2014, 23(6): 064101.
[11] Asymmetric simple exclusion processes with complex lattice geometries: A review of models and phenomena
Liu Ming-Zhe (刘明哲), Li Shao-Da (李少达), Wang Rui-Li. Chin. Phys. B, 2012, 21(9): 090510.
[12] Spontaneous symmetry breaking vacuum energy in cosmology
Zhou Kang(周康), Yue Rui-Hong(岳瑞宏), Yang Zhan-Ying(杨战营), and Zou De-Cheng(邹德成) . Chin. Phys. B, 2012, 21(7): 079801.
[13] Symmetry breaking in the opinion dynamics of a multi-group project organization
Zhu Zhen-Tao (朱振涛), Zhou Jing (周晶), Li Ping (李平), Chen Xing-Guang (陈星光). Chin. Phys. B, 2012, 21(10): 100503.
[14] Spontaneous symmetry breaking of a Bose–Fermi mixture in a two-dimensional double-well potential
Wang Yuan-Sheng(王元生), Yan Pei-Gen(颜培根), Li Bin(李彬), and Liu Xue-Shen(刘学深) . Chin. Phys. B, 2012, 21(1): 010309.
[15] The focusing performance with a horizontal time- reversal array at different depths in shallow water
Zhang Tong-Wei(张同伟) Yang Kun-De(杨坤德), and Ma Yuan-Liang(马远良). Chin. Phys. B, 2010, 19(12): 124301.
No Suggested Reading articles found!