Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 017305    DOI: 10.1088/1674-1056/23/1/017305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mobility limited by cluster scattering in ternary alloy quantum wires

Zhang Heng (张恒), Yang Shao-Yan (杨少延), Liu Gui-Peng (刘贵鹏), Wang Jian-Xia (王建霞), Jin Dong-Dong (金东东), Li Hui-Jie (李辉杰), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国)
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The mobility limited by cluster scattering in ternary alloy semiconductor quantum wire (QWR) is theoretically investigated under Born approximation. We calculate the screened mobility due to clusters (high indium composition InGaN) scattering in the InxGa1-xN QWR structure. The characteristics of the cluster scattering mechanism are discussed in terms of the indium composition of clusters, the one-dimensional electron gas (1DEG) concentration, and the radius of QWR. We find that the density, breadth of cluster, and the correlation length have a strong effect on the electron mobility due to cluster scattering. Finally, a comparison of the cluster scattering is made with the alloy-disorder scattering. It is found that the cluster scattering acts as a significant scattering event to impact the resultant electron mobility in ternary alloy QWR.
Keywords:  mobility      cluster scattering      quantum wire      one-dimensional electron gas  
Received:  19 March 2013      Revised:  28 April 2013      Accepted manuscript online: 
PACS:  73.50.Dn (Low-field transport and mobility; piezoresistance)  
  73.21.Hb (Quantum wires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91233111, 61274041, 11275228, 61006004, and 61076001), the National Basic Research Program of China (Grant No. 2012CB619305), and the High Technology R&D Program of China (Grant No. 2011AA03A101).
Corresponding Authors:  Yang Shao-Yan     E-mail:  sh-yyang@semi.ac.cn

Cite this article: 

Zhang Heng (张恒), Yang Shao-Yan (杨少延), Liu Gui-Peng (刘贵鹏), Wang Jian-Xia (王建霞), Jin Dong-Dong (金东东), Li Hui-Jie (李辉杰), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国) Mobility limited by cluster scattering in ternary alloy quantum wires 2014 Chin. Phys. B 23 017305

[1] Feng S W, Tang T Y, Lu Y C, Liu S J, Lin E C, Yang C C, Ma K J, Shen C H, Chen L C, Kim K H, Lin J Y and Jiang H X 2004 J. Appl. Phys. 95 5388
[2] Lin Y S, Ma K J, Hsu C, Feng S W, Cheng Y C, Liao C C, Yang C C, Chou C C, Lee C M and Chyi J I 2000 Appl. Phys. Lett. 77 2988
[3] Hsu C W, Ganguly A, Liang C H, Hung Y T, Wu C T, Hsu G M, Chen Y F, Chen C C, Chen K H and Chen L C 2008 Adv. Funct. Mater. 18 938
[4] Leonard D, Krishnamurthy M, Reaves C M, Denbaars S P and Petroff P M 1993 Appl. Phys. Lett. 63 3203
[5] Hesis M, Ketterer B, Uccelli E, Morante J R, Arbiol J and Morral A F 2011 Nanotechnol. 22 195601
[6] Gomyo A, Suzuki T and Iijima S 1988 Phys. Rev. Lett. 60 2645
[7] Holonyak N, Laidig W D, Hess K, Coleman J J and Dapkus P D 1981 Phys. Rev. Lett. 46 1043
[8] Holonyak N, Laidig W D, Camras M D, Morkoc H, Drummond T J, Hess K and Burroughs M S 1981 J. Appl. Phys. 52 7201
[9] Wakahara A, Tokuda T, Dang X Z, Noda S and Sasaki A 1997 Appl. Phys. Lett. 71 906
[10] Singh R, Doppalapudi D, Moustakas T D and Romano L T 1997 Appl. Phys. Lett. 70 1089
[11] Doppalapudi D, Basu S N, Ludwig K F and Moustakas T D 1998 J. Appl. Phys. 84 1389
[12] Behr D, Wagner J, Ramakrishnan A, Obloh H and Bachem K H 1998 Appl. Phys. Lett. 73 241
[13] Lakner H, Liu Q, Brockt G, Radefeld A, Meinert A and Scholz F 1998 Mater. Sci. Eng. B 51 44
[14] Ye F, Cai X M, Wang X M and Xie E Q 2007 J. Cryst. Growth 304 333
[15] Mowbray D J and Skolnick M S 2005 J. Phys. D: Appl. Phys. 38 2059
[16] Shields A J, O’Sullivan M P, Farrer I, Ritchie D A, Hogg R A, Leadbeater M L, Norman C E and Pepper M 2000 Appl. Phys. Lett. 76 3673
[17] Koike K, Saitoh K, Li S, Sasa S, Inoue M and Yano M 2000 Appl. Phys. Lett. 76 1464
[18] Singh R and Bester G 2009 Phys. Rev. Lett. 103 063601
[19] Banerjee A, Dogan F, Heo J, Manchon A, Guo W and Bhattacharya P 2011 Nano Lett. 11 5396
[20] Bulgarini G, Reimer M E and Zwiller V 2012 Appl. Phys. Lett. 101 111112
[21] Yan X, Zhang X, Ren X M, Li J S, Lü X L, Wang Q and Huang Y Q 2012 Appl. Phys. Lett. 101 023106
[22] Sakaki H 1980 Jpn. J. Appl. Phys. 19 L735
[23] Marsh J H 1982 Appl. Phys. Lett. 41 732
[24] Friedman D J, Kibbler A E and Olson J M 1991 Appl. Phys. Lett. 59 2998
[25] Li Z W, Xu X Q, Wang J, Liu J M, liu X L, Yang S Y, Zhu Q S and Wang Z G 2010 Physica E 43 543
[26] Sakaki H, Yusa G, Someya T, Ohno Y, Noda T, Akiyama H, Kadoya Y and Noge H 1995 Appl. Phys. Lett. 67 3444
[27] Kim G H, Ritchie D A, Pepper M, Lian G D, Yuan J and Brown L M 1998 Appl. Phys. Lett. 73 2468
[28] Kannan E S, Kim G H, Kumar S, Farrer I, Ritchie D A, Son J H, Baik J M, Lee J L, Youn D H and Kang K Y 2007 Appl. Phys. Lett. 90 152110
[29] Li G D, Yin H, Zhu Q S, Sakaki H and Jiang C 2010 J. Appl. Phys. 108 043702
[30] Hsu L, Jones R E, Li S X, Yu K M and Walukiewicz W 2007 J. Appl. Phys. 102 073705
[31] Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K and DenBaars S P 1997 Appl. Phys. Lett. 71 2572
[32] Wu J, Walukiewicz W, Yu K M, Shan W, Ager III J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477
[33] Lin H W, Lu Y J, Chen H Y, Lee H M and Gwo S 2010 Appl. Phys. Lett. 97 073101
[34] Golam Sarwar A T M and Myers R C 2012 Appl. Phys. Lett. 101 143905
[35] Lee J and Spector H N 1983 J. Appl. Phys. 54 3921
[36] Ferry D K, Goodnick S M and Bird J 2009 Transport in Nanostructures (Cambridge: Cambridge University Press) p. 97
[37] Tsetseri M and Triberis G P 2004 Phys. Rev. B 69 075313
[38] Wu J, Walukiewicz W, Yu K M, Ager III J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
[39] Chuang S L 1996 IEEE J. Quantum Elect. 32 1791
[40] Piprek J 2007 Nitride Semiconductor Devices: Principles and Simulation (Weinheim: Wiley-VCH) p. 496
[41] Fishman G 1986 Phys. Rev. B 34 2394
[42] Ibragimov G B 2003 Phys. Stat. Sol. (b) 236 112
[1] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[5] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[6] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[7] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[8] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[9] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[10] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[11] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[12] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[13] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[14] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[15] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
No Suggested Reading articles found!