CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Mobility limited by cluster scattering in ternary alloy quantum wires |
Zhang Heng (张恒), Yang Shao-Yan (杨少延), Liu Gui-Peng (刘贵鹏), Wang Jian-Xia (王建霞), Jin Dong-Dong (金东东), Li Hui-Jie (李辉杰), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国) |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract The mobility limited by cluster scattering in ternary alloy semiconductor quantum wire (QWR) is theoretically investigated under Born approximation. We calculate the screened mobility due to clusters (high indium composition InGaN) scattering in the InxGa1-xN QWR structure. The characteristics of the cluster scattering mechanism are discussed in terms of the indium composition of clusters, the one-dimensional electron gas (1DEG) concentration, and the radius of QWR. We find that the density, breadth of cluster, and the correlation length have a strong effect on the electron mobility due to cluster scattering. Finally, a comparison of the cluster scattering is made with the alloy-disorder scattering. It is found that the cluster scattering acts as a significant scattering event to impact the resultant electron mobility in ternary alloy QWR.
|
Received: 19 March 2013
Revised: 28 April 2013
Accepted manuscript online:
|
PACS:
|
73.50.Dn
|
(Low-field transport and mobility; piezoresistance)
|
|
73.21.Hb
|
(Quantum wires)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91233111, 61274041, 11275228, 61006004, and 61076001), the National Basic Research Program of China (Grant No. 2012CB619305), and the High Technology R&D Program of China (Grant No. 2011AA03A101). |
Corresponding Authors:
Yang Shao-Yan
E-mail: sh-yyang@semi.ac.cn
|
Cite this article:
Zhang Heng (张恒), Yang Shao-Yan (杨少延), Liu Gui-Peng (刘贵鹏), Wang Jian-Xia (王建霞), Jin Dong-Dong (金东东), Li Hui-Jie (李辉杰), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国) Mobility limited by cluster scattering in ternary alloy quantum wires 2014 Chin. Phys. B 23 017305
|
[1] |
Feng S W, Tang T Y, Lu Y C, Liu S J, Lin E C, Yang C C, Ma K J, Shen C H, Chen L C, Kim K H, Lin J Y and Jiang H X 2004 J. Appl. Phys. 95 5388
|
[2] |
Lin Y S, Ma K J, Hsu C, Feng S W, Cheng Y C, Liao C C, Yang C C, Chou C C, Lee C M and Chyi J I 2000 Appl. Phys. Lett. 77 2988
|
[3] |
Hsu C W, Ganguly A, Liang C H, Hung Y T, Wu C T, Hsu G M, Chen Y F, Chen C C, Chen K H and Chen L C 2008 Adv. Funct. Mater. 18 938
|
[4] |
Leonard D, Krishnamurthy M, Reaves C M, Denbaars S P and Petroff P M 1993 Appl. Phys. Lett. 63 3203
|
[5] |
Hesis M, Ketterer B, Uccelli E, Morante J R, Arbiol J and Morral A F 2011 Nanotechnol. 22 195601
|
[6] |
Gomyo A, Suzuki T and Iijima S 1988 Phys. Rev. Lett. 60 2645
|
[7] |
Holonyak N, Laidig W D, Hess K, Coleman J J and Dapkus P D 1981 Phys. Rev. Lett. 46 1043
|
[8] |
Holonyak N, Laidig W D, Camras M D, Morkoc H, Drummond T J, Hess K and Burroughs M S 1981 J. Appl. Phys. 52 7201
|
[9] |
Wakahara A, Tokuda T, Dang X Z, Noda S and Sasaki A 1997 Appl. Phys. Lett. 71 906
|
[10] |
Singh R, Doppalapudi D, Moustakas T D and Romano L T 1997 Appl. Phys. Lett. 70 1089
|
[11] |
Doppalapudi D, Basu S N, Ludwig K F and Moustakas T D 1998 J. Appl. Phys. 84 1389
|
[12] |
Behr D, Wagner J, Ramakrishnan A, Obloh H and Bachem K H 1998 Appl. Phys. Lett. 73 241
|
[13] |
Lakner H, Liu Q, Brockt G, Radefeld A, Meinert A and Scholz F 1998 Mater. Sci. Eng. B 51 44
|
[14] |
Ye F, Cai X M, Wang X M and Xie E Q 2007 J. Cryst. Growth 304 333
|
[15] |
Mowbray D J and Skolnick M S 2005 J. Phys. D: Appl. Phys. 38 2059
|
[16] |
Shields A J, O’Sullivan M P, Farrer I, Ritchie D A, Hogg R A, Leadbeater M L, Norman C E and Pepper M 2000 Appl. Phys. Lett. 76 3673
|
[17] |
Koike K, Saitoh K, Li S, Sasa S, Inoue M and Yano M 2000 Appl. Phys. Lett. 76 1464
|
[18] |
Singh R and Bester G 2009 Phys. Rev. Lett. 103 063601
|
[19] |
Banerjee A, Dogan F, Heo J, Manchon A, Guo W and Bhattacharya P 2011 Nano Lett. 11 5396
|
[20] |
Bulgarini G, Reimer M E and Zwiller V 2012 Appl. Phys. Lett. 101 111112
|
[21] |
Yan X, Zhang X, Ren X M, Li J S, Lü X L, Wang Q and Huang Y Q 2012 Appl. Phys. Lett. 101 023106
|
[22] |
Sakaki H 1980 Jpn. J. Appl. Phys. 19 L735
|
[23] |
Marsh J H 1982 Appl. Phys. Lett. 41 732
|
[24] |
Friedman D J, Kibbler A E and Olson J M 1991 Appl. Phys. Lett. 59 2998
|
[25] |
Li Z W, Xu X Q, Wang J, Liu J M, liu X L, Yang S Y, Zhu Q S and Wang Z G 2010 Physica E 43 543
|
[26] |
Sakaki H, Yusa G, Someya T, Ohno Y, Noda T, Akiyama H, Kadoya Y and Noge H 1995 Appl. Phys. Lett. 67 3444
|
[27] |
Kim G H, Ritchie D A, Pepper M, Lian G D, Yuan J and Brown L M 1998 Appl. Phys. Lett. 73 2468
|
[28] |
Kannan E S, Kim G H, Kumar S, Farrer I, Ritchie D A, Son J H, Baik J M, Lee J L, Youn D H and Kang K Y 2007 Appl. Phys. Lett. 90 152110
|
[29] |
Li G D, Yin H, Zhu Q S, Sakaki H and Jiang C 2010 J. Appl. Phys. 108 043702
|
[30] |
Hsu L, Jones R E, Li S X, Yu K M and Walukiewicz W 2007 J. Appl. Phys. 102 073705
|
[31] |
Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K and DenBaars S P 1997 Appl. Phys. Lett. 71 2572
|
[32] |
Wu J, Walukiewicz W, Yu K M, Shan W, Ager III J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477
|
[33] |
Lin H W, Lu Y J, Chen H Y, Lee H M and Gwo S 2010 Appl. Phys. Lett. 97 073101
|
[34] |
Golam Sarwar A T M and Myers R C 2012 Appl. Phys. Lett. 101 143905
|
[35] |
Lee J and Spector H N 1983 J. Appl. Phys. 54 3921
|
[36] |
Ferry D K, Goodnick S M and Bird J 2009 Transport in Nanostructures (Cambridge: Cambridge University Press) p. 97
|
[37] |
Tsetseri M and Triberis G P 2004 Phys. Rev. B 69 075313
|
[38] |
Wu J, Walukiewicz W, Yu K M, Ager III J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
|
[39] |
Chuang S L 1996 IEEE J. Quantum Elect. 32 1791
|
[40] |
Piprek J 2007 Nitride Semiconductor Devices: Principles and Simulation (Weinheim: Wiley-VCH) p. 496
|
[41] |
Fishman G 1986 Phys. Rev. B 34 2394
|
[42] |
Ibragimov G B 2003 Phys. Stat. Sol. (b) 236 112
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|