Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 024501    DOI: 10.1088/1674-1056/21/2/024501
GENERAL Prev   Next  

Maturing process of solitary wave train in a step-down chain

Xia Ji-Hong(夏继宏)a)b), Wang Ping-Jian(王平建)a), and Liu Chang-Song(刘长松)a)
a. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
b. Department of Physics, Chongqing University of Arts and Sciences, Chongqing 402160, China
Abstract  In a step-down chain a solitary wave (SW) evolves into an SW train (SWT), but the formation of well-defined SWT takes time and space and little is known of the process from immature into mature SWT. We therefore perform a detailed numerical study of this process by analysing the local velocity amplitude and peak overlap of immature ordered SWs. The first SW continuously increases to maximal velocity amplitude and peak overlap until it is matured, but for following SWs there exist a minimal and maximal value of local velocity amplitude and, a minimal and maximal value of local peak overlap, clarifying the details of the energy propagation along the stepped chain. The immature and mature SWTs show the same dependence of the phase velocity on the SWs sequence. These provide guidelines for when or where the attention should be paid in the study of SWT.
Keywords:  granular systems      solitary wave      molecular dynamics simulation  
Received:  01 May 2011      Revised:  23 August 2011      Accepted manuscript online: 
PACS:  45.70.-n (Granular systems)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074253), the Research Foundation of Chongqing University of Arts and Sciences (Grant No. Z2011RCYJ05), and the Foundation supported by the Center for Computational Science, Hefei Institutes of Physical Sciences.
Corresponding Authors:  Liu Chang-Song,     E-mail:

Cite this article: 

Xia Ji-Hong(夏继宏), Wang Ping-Jian(王平建), and Liu Chang-Song(刘长松) Maturing process of solitary wave train in a step-down chain 2012 Chin. Phys. B 21 024501

[1] Nesterenko V F 1984 J. Appl. Mech. Tech. Phys. 5 733
[2] Nesterenko V F 2001 Dynamics of Heterogeneous Materials (New York: Springer ) Chap. 1
[3] Nesterenko V F, Daraio C, Herbold E B and Jin S 2005 Phys. Rev. Lett. 95 158702
[4] Arancibia-Bulnes C and Ruiz-Su`arez J 2002 Physica D 159 168
[5] Sinkovits R S and Sen S 1995 Phys. Rev. Lett. 74 2686
[6] Sen S and Manciu M 1999 Physica A 268 644
[7] Sen S, Manciu M and Manciu F S 1999 Appl. Phys. Lett. bf 75 1479
[8] Manciu M, Sen S and Hurd A J 2000 Phys. Rev. E 63 016614
[9] Manciu F S and Sen S 2002 Phys. Rev. E 66 016616
[10] Melo F, Job S, Santibanez F and Tapia F 2006 Phys. Rev. E 73 041305
[11] Coste C, Falcon E and Fauve S 1997 Phys. Rev. E 56 6104
[12] Ji J and Hong J 1999 Phys. Lett. A 260 60
[13] Hong J and Xu A 2001 Phys. Rev. E 63 061310
[14] Hong J and Xu A 2002 Appl. Phys. Lett. 81 4686
[15] Hong J 2005 Phys. Rev. Lett. 94 108001
[16] Lee J, Park S and Yu I 2003 Phys. Rev. E 67 066607
[17] Rosas A and Lindenberg K 2004 Phys. Rev. E 69 037601
[18] Daraio C, Nesterenko V F, Herbold E B and Jin S 2005 Phys. Rev. E 72 016603
[19] Job S, Melo F, Sokolow A and Sen S 2005 Phys. Rev. Lett. 94 178002
[20] Job S, Melo F, Sokolow A and Sen S 2007 it Granular Matter 10 13
[21] Sokolow A, Bitte E G and Sen S 2007 Europhys. Lett. 77 24002
[22] Vergara L 2005 Phys. Rev. Lett. 95 108002
[23] Doney R and Sen S 2006 Phys. Rev. Lett. 97 155502
[24] Doney R L and Sen S 2005 Phys. Rev. E 72 041304
[25] Wang P J, Xia J H, Li Y D and Liu C S 2007 Phys. Rev. E 76 041305
[26] Wang P J, Li Y D, Xia J H and Liu C S 2008 Phys. Rev. E 77 060301(R)
[27] Wang P J, Xia J H, Liu C S, Liu H and Yan L 2011 Acta Phys. Sin. 60 014501 (in Chinese)
[28] Zhao Z, Liu C S and Brogliato B 2008 Phys. Rev. E 78 031307
[29] Remoissenet M 1999 Waves Called Solitons (Berlin: Springer)
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
No Suggested Reading articles found!