Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 024212    DOI: 10.1088/1674-1056/21/2/024212
GENERAL Prev   Next  

The contrast between defect solitons in parity–time symmetric superlattice and simple-lattice complex potentials

Hu Su-Mei(胡素梅)a)b) and Hu Wei(胡巍)a)
a. Laboratory of Photonic Information Technology, South China Normal University, Guangzhou 510631, China;
b. Department of Physics, Guangdong University of Petrochemical Technology, Maoming 525000, China
Abstract  The existence and stability of defect superlattice solitons in parity-time (PT) symmetric superlattice and simple-lattice complex potentials are reported. Compared with defect simple-lattice solitons in similar potentials, the defect soliton in superlattice has a wider stable range than that in simple-lattice. The solitons' power increases with increasing propagation constant. For the positive defect, the solitons are stable in the whole region where solitons exist in the semi-infinite gap. For the zero defect, the solitons are unstable at the edge of the band. For the negative defect, the solitons propagate with the shape of Y at low propagation constant and propagate stably at the large one.
Keywords:  defect superlattice solitons      parity-time symmetry  
Received:  09 June 2011      Revised:  05 August 2011      Accepted manuscript online: 
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804033 and 10674050), the Program for Innovative Research (Grant No. 06CXTD005), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200805740002).
Corresponding Authors:  Hu Wei,huwei@scnu.edu.cn     E-mail:  huwei@scnu.edu.cn

Cite this article: 

Hu Su-Mei(胡素梅) and Hu Wei(胡巍) The contrast between defect solitons in parity–time symmetric superlattice and simple-lattice complex potentials 2012 Chin. Phys. B 21 024212

[1] Makris K G, Ganainy R EI, Christodoulides D N and Musslimani Z H 2010 Phys. Rev. A 81 06387
[2] Bendix O, Fleischmann R, Kottos T and Shapiro B 2009 Phys. Rev. Lett. 103 030402
[3] Jin L and Song Z 2009 Phys. Rev. A 80 052107
[4] West C T, Kottos T and Prosen T 2010 Phys. Rev. Lett. 104 054102
[5] Musslimani Z H, Makris K G, Ganainy R EI and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[6] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Imez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[7] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 27 270401
[8] Sukhorukov A A, Xu Z Y and Kivshar Y S 2010 Phys. Rev. Lett. 82 043818
[9] Yaroslav F Y, Kartashov V, Vysloukh V A and Torner L 2008 Phys. Rev. A 78 013847
[10] Li Y Y, Pang W, Chen Y Z, Yu Z Q and Zhang H Y 2009 Phys. Rev. A 80 043824
[11] Brazhnyi V A, Konotop V V and Perez-Garcia V M 2006 Phys. Rev. Lett. 96 060403
[12] Fedele F, Yang J and Chen Z 2005 Phys. Rev. Lett. 30 1506
[13] Campbell D K, Flach S and Kivshar Y S 2004 Phys. Today 57 43
[14] Chen W H, He Y J and Wang H Z 2007 Opt. Express 22 14498
[15] Zhang Z Y and Xiong S J 1997 Phys. Rev. B 55 10302
[16] Alekseev K N, Berman G P, Campbell D K, Cannon E H and Cargo M C 1996 Phys. Rev. B 54 10625
[17] Porter M A, Kevrekidis P G, Carretero-Gonzalez R and Frantzeskakis D J 2006 Phys. Lett. A 352 210
[18] Ghulinyan M, Oton C J, Gaburro Z, Pavesi L, Toninelli C and Wiersma D S 2005 Phys. Rev. Lett. 94 127401
[19] Dreisow F, Szameit A, Heinrich M, Pertsch T, Nolte S, Unnermann A T and Longhi S 2009 Phys. Rev. Lett. 102 076802
[20] Chen W and Mill D L 1987 Phys. Rev. Lett. 58 160
[21] Zhou K Y, Guo Z Y, Wang J C and Liu S T 2010 Opt. Lett. 35 172928
[22] Hang W and Wang J D 2011 Opt. Express 19 4030
[1] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[2] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[3] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[4] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[5] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[6] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[7] Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios
Jia-Ye Wu(吴嘉野), Xu-Hang Wu(吴栩航), Xiang-Bo Yang(杨湘波), Hai-Ying Li(李海盈). Chin. Phys. B, 2019, 28(10): 104208.
[8] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[9] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
[10] Bifurcated overtones of one-way localized Fabry–Pérot resonances in parity-time symmetric optical lattices
Fatma Nafaa Gaafer, Yaxi Shen(沈亚西), Yugui Peng(彭玉桂), Aimin Wu(武爱民), Peng Zhang(张鹏), Xuefeng Zhu(祝雪丰). Chin. Phys. B, 2017, 26(7): 074218.
No Suggested Reading articles found!