Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 025201    DOI: 10.1088/1674-1056/21/2/025201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser

Dai Ye(戴晔), Yu Guang-Jun(余光军), Wu Guo-Rui(武国睿), Ma Hong-Liang(马洪良), Yan Xiao-Na(阎晓娜), and Ma Guo-Hong(马国宏)
Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  In this paper, we study the effect of spherical aberrations on the light intensity and the temperature distribution in the focal region in a 250-kHz femtosecond laser irradiated Ag+-doped borosilicate glass. When a focused beam goes through an interface between air and glass, spherical aberration will result in the separation of the focal point and then cause a clear change of the light intensity distribution along the incident direction. That phenomenon will further influence the longitudinal cross-section temperature distribution in glass. Here we use Ag nanoparticle formation as a marker for establishing temperature distribution and we find that the formation of nanoparticle shows a strong dependence on the temperature field and the detailed precipitation process is also discussed.
Keywords:  femtosecond laser      glass      spherical aberration      heat accumulation effect  
Received:  19 July 2011      Revised:  15 August 2011      Accepted manuscript online: 
PACS:  52.38.Mf (Laser ablation)  
  42.15.Fr (Aberrations)  
  78.20.nb (Photothermal effects)  
  82.60.Nh (Thermodynamics of nucleation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60908007) and the Shanghai Leading Academic Discipline Project, China (Grant No. S30105).
Corresponding Authors:  Dai Ye,yedai@shu.edu.cn     E-mail:  yedai@shu.edu.cn

Cite this article: 

Dai Ye(戴晔), Yu Guang-Jun(余光军), Wu Guo-Rui(武国睿), Ma Hong-Liang(马洪良), Yan Xiao-Na(阎晓娜), and Ma Guo-Hong(马国宏) The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser 2012 Chin. Phys. B 21 025201

[1] Davis K M, Miura K, Sugimoto N and Hirao K 1996 Opt. Lett. 21 1729
[2] Yang W J, Kazansky P G and Svirko Y P 2008 Nat. Photon. 2 99
[3] Glezer E N, Milosavljevic M, Huang L, Finlay R J, Her T H, Callan J P and Mazur E 1996 Opt. Lett. 21 2023
[4] Qiu J, Miura K, Suzuki T, Mitsuyu T and Hirao K 1999 Appl. Phys. Lett. 74 10
[5] Shimotsuma Y, Sakakura M, Kazansky P G, Beresna M, Qiu J, Miura K and Hirao K 2010 Adv. Mater. 22 4039
[6] Shimotsuma Y, Kazansky P G, Qiu J and Hirao K 2003 Phys. Rev. Lett. 91 247405
[7] Zhao Q Z, Malzer S and Wang L J 2007 Opt. Lett. 32 1932
[8] Xiong P X, Jia X, Jia T Q, Deng L, Feng D H, Sun Z R and Xu Z Z 2010 Acta Phys. Sin. 59 311 (in Chinese)
[9] Dai Y, Ma H, Lu B, Yu B, Zhu B and Qiu J 2008 Opt. Express 16 3912
[10] Kanehira S, Miura K and Hirao K 2008 Appl. Phys. Lett. 93 023112
[11] Luo F F, Qian B, Lin G, Xu J, Liao Y, Song J, Sun H, Zhu B, Qiu J R, Zhao Q Z and Xu Z Z 2010 Opt. Express 18 6262
[12] Schaffer C B, Brodeur A, Garc'hia J F and Mazur E 2001 Opt. Lett. 26 93
[13] Eaton S M, Zhang H, Herman P R, Yoshino F, Shah L, Bovatsek J and Arai A Y 2005 Opt. Express 13 4708
[14] Shimizu M, Sakakura M, Ohnishi M, Shimotsuma Y, Nakaya T, Miura K and Hirao K 2010 J. Appl. Phys. 108 073533
[15] Luo F F, Song J, Hu X, Sun H, Lin G, Pan H, Cheng Y, Liu L, Qiu J R, Zhao Q Z and Xu Z Z 2011 Opt. Lett. 36 2125
[16] Sun Q, Jiang H, Liu Y, Zhou Y, Yang H and Gong Q 2005 J. Opt. A 7 655
[17] Marcinkevivcius A, Mizeikis V, Juodkazis S, Matsuo S, Misawa H 2003 Appl. Phys. A 76 257
[18] Dai Y and Qiu J R 2009 Chin. Phys. B 18 2858
[19] Dogariu A C and Rajagopalan R 2000 Langmuir 16 2770
[20] Song J, Wang X, Hu X, Dai Y, Qiu J, Cheng Y and Xu Z 2008 Appl. Phys. Lett. 92 092904
[21] N-BK7 glass data sheet from Schott
[22] Sun H Y, Luo F F, He F, Liao Y and Xu J 2010 Chin. Phys. B 19 054210
[23] Qiu J, Shirai M, Nakaya T, Si J, Jiang X, Zhu C and Hirao K 2002 Appl. Phys. Lett. 81 3040
[24] Dai Y, Yu G, He M, Ma H, Yan X and Ma G 2011 Appl. Phys. B 103 663
[1] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[2] Measurement of CO, HCN, and NO productions in atmospheric reaction induced by femtosecond laser filament
Xiao-Dong Huang(黄晓东), Meng Zhang(张梦), Lun-Hua Deng(邓伦华), Shan-Biao Pang(庞山彪), Ke Liu(刘珂), and Huai-Liang Xu(徐淮良). Chin. Phys. B, 2022, 31(9): 097801.
[3] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[4] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[5] Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid
Yichun Wang(王奕淳), Han Wu(吴寒), Wenkang Lu(陆文康), Meng Li(李萌), Ling Tao(陶凌), and Xiuquan Ma(马修泉). Chin. Phys. B, 2022, 31(7): 070204.
[6] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[7] Radiation resistance property of barium gallo-germanate glass doped by Nb2O5
Gui-Rong Liu(刘桂榕), Xiao-Dong Chen(陈晓东), Hong-Gang Liu(刘红刚), Yan Wang(王琰), Min Sun(孙敏), Na Yan(闫娜), Qi Qian(钱奇), and Zhong-Min Yang(杨中民). Chin. Phys. B, 2022, 31(2): 027801.
[8] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[9] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[10] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[11] Direct growth of graphene films without catalyst on flexible glass substrates by PECVD
Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔). Chin. Phys. B, 2021, 30(9): 098101.
[12] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[13] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[14] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[15] Preparation and properties of GAGG:Ce/glass composite scintillation material
Wei-Jie Zhang(张伟杰), Qin-Hua Wei(魏钦华), Xiao Shen(沈潇), Gao Tang(唐高), Zhen-Hua Chen(陈振华), Lai-Shun Qin(秦来顺), and Hong-Sheng Shi(史宏声). Chin. Phys. B, 2021, 30(7): 074205.
No Suggested Reading articles found!