Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 127806    DOI: 10.1088/1674-1056/21/12/127806
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Manipulated localized surface plasmon resonances in silver nanoshells coated with a spherical anisotropic layer

Jiang Shu-Min (蒋书敏)a, Wu Da-Jian (吴大建)a, Cheng Ying (程营)b, Liu Xiao-Jun (刘晓峻)b
a Faculty of Science, Jiangsu University, Zhenjiang 212013, China;
b School of Physics, Nanjing University, Nanjing 210093, China
Abstract  The influences of the anisotropy of outer spherically anisotropic (SA) layer on the far-field spectra and near-field enhancements of the silver nanoshells are investigated by using a modified Mie scattering theory. It is found that with the increase of the anisotropic value of the SA layer, the dipole resonance wavelength of the silver nanoshell first increases and then decreases, while the local field factor (LFF) reduces. With the decrease of SA layer thickness, the dipole wavelength of the silver nanoshell shows a distinct blue-shift. When the SA layer becomes very thin, the modulations of the anisotropy of SA layer on the plasmon resonance energy and the near-field enhancement are weakened. We further find that the smaller anisotropic value of the SA layer is helpful for obtaining the larger near-field enhancement in the Ag nanoshell. The geometric average of the dielectric components of SA layer has a stronger effect on the plasmon resonance energy of the silver nanoshell than on the near-field enhancement.
Keywords:  Ag nanoshell      spherically anisotropic      Mie theory      localized surface plasmon resonance  
Received:  17 May 2012      Revised:  07 June 2012      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  36.40.Vz (Optical properties of clusters)  
  73.22.Lp (Collective excitations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 10904052, 11174113, and 11104319), the Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 1002075C), and the Senior Talent Foundation of Jiangsu University, China (Grant No. 09JDG073).
Corresponding Authors:  Wu Da-Jian, Liu Xiao-Jun     E-mail:  wudajian@ujs.edu.cn;liuxiaojun@nju.edu.cn

Cite this article: 

Jiang Shu-Min (蒋书敏), Wu Da-Jian (吴大建), Cheng Ying (程营), Liu Xiao-Jun (刘晓峻) Manipulated localized surface plasmon resonances in silver nanoshells coated with a spherical anisotropic layer 2012 Chin. Phys. B 21 127806

[1] Potara M, Baia M, Farcau C and Astilean S 2012 Nanotechnology 23 055501
[2] Hu J and Zhang C Y 2012 Biosensors & Bioelectronics 31 451
[3] Lee S, Chon H, Yoon S Y, Lee E K, Chang S I, Lim D W and Choo J 2012 Nanoscale 4 124
[4] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
[5] Laserna J J 1993 Anal. Chem. Acta 283 607
[6] Cui Y, Ren B, Yao J L, Gu R A and Tian Z Q 2006 J. Phys. Chem. B 110 4002
[7] Wu D J and Liu X J 2010 Appl. Phys. Lett. 96 151912
[8] Wu D J and Liu X J 2010 Appl. Phys. Lett. 97 061904
[9] Park S Y and Stroud D 2005 Phys. Rev. Lett. 94 217401
[10] Gao L and Yu X P 2007 Eur. Phys. J. B 55 403
[11] Yin Y D, Gao L and Qiu C W 2011 J. Phys. Chem. C 115 8893
[12] Liu D H, Xu C and Hui P M 2008 Appl. Phys. Lett. 92 181901
[13] Averitt R D, Westcott S L and Halas N J 1999 J. Opt. Soc. Am. B 16 1824
[14] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[15] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley).
[16] Luk'yanchuk B S and Qiu C W 2008 Appl. Phys. A 92 773
[17] Prodan E, Radloof C, Halas N J and Nordlander P 2003 Science 302 419
[18] Wu D J and Liu X J 2011 Appl. Phys. A 105 439
[19] Prodan E, Lee A and Nordlander P 2002 Chem. Phys. Lett. 360 325
[20] Yan S N, Wang Y C, Wen T D and Zhu J 2006 Physica E 33 139
[21] Kelly K, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[22] Prodan E and Nordlander P 2004 J. Chem. Phys. 120 5444
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[3] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[4] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[5] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[6] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[7] Selective excitation of multipolar surface plasmon in a graphene-coated dielectric particle by Laguerre Gaussian beam
Yang Yang(杨阳), Guanghua Zhang(张光华), Xiaoyu Dai(戴小玉). Chin. Phys. B, 2020, 29(5): 057302.
[8] Electromagnetic scattering of charged particles in a strong wind-blown sand electric field
Xingcai Li(李兴财), Xuan Gao(高璇), Juan Wang(王娟). Chin. Phys. B, 2019, 28(3): 034208.
[9] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[10] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[11] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[12] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[13] Super scattering phenomenon in active spherical nanoparticles
Chang-Yu Liu(刘昌宇), Ya-Ming Xie(解亚明), Zhi-Guo Wang(王治国). Chin. Phys. B, 2017, 26(6): 067803.
[14] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[15] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
No Suggested Reading articles found!