Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 034208    DOI: 10.1088/1674-1056/28/3/034208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Electromagnetic scattering of charged particles in a strong wind-blown sand electric field

Xingcai Li(李兴财)1,2, Xuan Gao(高璇)1,2, Juan Wang(王娟)3
1 School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China;
2 Ningxia Key Laboratory of Intelligent Sensing for the Desert Information, Ningxia University, Yinchuan 750021, China;
3 Xinhua College, Ningxia University, Yinchuan 750021, China
Abstract  

Some field experimental results have shown that the moving sands or dust aerosols in nature are usually electrified, and those charged particles also produce a strong electric field in air, which is named as wind-blown sand electric field. Some scholars have pointed out that the net charge on the particle significantly enhances its electromagnetic (EM) extinction properties, but up to now, there is no conclusive research on the effect of the environmental electric field. Based on the extended Mie theory, the effect of the electric field in a sandstorm on the EM attenuation properties of the charged larger dust particle is studied. The numerical results indicate that the environmental electric field also has a great influence on the particle's optical properties, and the stronger the electric field, the bigger the effect. In addition, the charged angle, the charge density, and the particle radius all have a specific impact on the charged particle's optical properties.

Keywords:  wind-blown sand      electric field      extended Mie theory      charged particle      scattering  
Received:  22 June 2018      Revised:  19 October 2018      Accepted manuscript online: 
PACS:  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.68.Ge (Effects of clouds and water; ice crystal phenomena)  
  42.68.Mj (Scattering, polarization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11562017 and 11302111), the CAS “Light of West China” Program (Grant No. XAB2017AW03), adn the Major Innovation Projects for Building First-class Universities in China's Western Region (Grant No. ZKZD2017006).

Corresponding Authors:  Xingcai Li, Juan Wang     E-mail:  nxulixc2011@nxu.edu.cn;jjxn1983@gmail.com

Cite this article: 

Xingcai Li(李兴财), Xuan Gao(高璇), Juan Wang(王娟) Electromagnetic scattering of charged particles in a strong wind-blown sand electric field 2019 Chin. Phys. B 28 034208

[1] Akhlaq M, R Sheltami T and Mouftah H T 2012 Rev. Environ Sci. Niotechnol. 11 305
[2] Mahowald N, Ward D S, Kloster S, Flanner M G, Heald C L, Heavens N G, Hess P G, Lamarque J F and Chuang P Y 2011 Annu. Rev. Environ. Resour. 36 45
[3] Mishchenko M I, Travis L D and Lacis A A 2002 Scattering, Absorption, and Emission of Light by Small Particles (Cambridge: Cambridge University Press)
[4] Kokhanovsky A A 2013 Earth-Sci. Rev. 116 95
[5] Mishchenko M I, Hovenier J W and Travis L D 2000 Light Scattering by Nonspherical Particles, Theory, Measurement, and Applications (San Diego: Academic Press)
[6] Ludwig A C 1991 Comput. Phys. Commun. 68 306
[7] Wriedt T 1998 Part. & Part. Syst. Charact. 15 67
[8] Wriedt T 2007 J. Quant. Spectrosc. Radiat. Transfer 106 535
[9] Elabdin Z, Islam M R, Khalifa O O and Raouf H E A 2009 Prog. Electromagn. Res. M 6 139
[10] Bashir S O and McEwan N J 1986 IEE Proc. 133 241
[11] Dong Q and Cong H 1996 Chin. J. Radio Sci. 11 29
[12] Zheng X J, Huang N and Zhou Y H 2003 J. Geophys. Res. Space Phys. 108 4322
[13] Zheng X J 2013 Eur. Phys. J. E 36 138
[14] Zhai Y, Cummer S A and Farrell W M 2006 J. Geophys. Res. 111 E06016
[15] Bo T L and Zheng X J 2013 Aeolian Res. 8 39
[16] Zhang H F, Wang T, Qu J J and Yan M H 2004 Chin. J. Geophys. 47 53
[17] Zhou Y H, He Q S and Zheng X J 2005 Eur. Phys. J. E 17 181
[18] Zhang B and Li X 2014 J. Quant. Spectrosc. Radiat. Transfer 148 228
[19] Xie L, Li X and Zheng X 2010 Appl. Opt. 49 6756
[20] Li X and Zhang B 2013 J. Quant. Spectrosc. Radiat. Transfer 119 150
[21] Klacka J and Kocifaj M 2007 J. Quant. Spectrosc. Radiat. Transfer 106 170
[22] Klacka J and Kocifaj M 2010 Prog. Electromagn. Res. 109 17
[23] Chen Y Y, Xie A G, Gu F, Wang Q H and Li Z H 2015 Indian J. Phys. 89 299
[24] Li X, Xie L and Zheng X 2012 J. Quant. Spectrosc. Radiat. Transfer 113 251
[25] Heinisch R L, Bronold F X and Fehske H 2012 Phys. Rev. Lett. 109 243903
[26] Xingcai L, Dandan L and Xing M 2014 J. Quant. Spectrosc. Radiat. Transfer 149 103
[27] Xu Y L 1998 Phys. Lett. A 249 30
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[6] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[7] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[10] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[11] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[12] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[13] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[14] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[15] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
No Suggested Reading articles found!