Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 126802    DOI: 10.1088/1674-1056/21/12/126802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics study of mechanical characteristics of Ni/Cu bilayer using nanoindentation

Muhammad Imrana, Fayyaz Hussaina b, Muhammad Rashida, S. A. Ahmada
a Department of Physics, Simulation Laboratory, The Islamia University of Bahawalpur, 63100, Pakistan;
b Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore
Abstract  In the present work, a three-dimensional molecular dynamics simulation is carried out to perform the nanoindentation experiment on Ni single crystal. The substrate indenter system is modeled using hybrid interatomic potentials including many-body potential embedded atom method (EAM), and two-body morse potential. To simulate the indentation process, spherical indenter (diameter=80 Å, 1 Å=0.1 nm) is chosen. The results show that mechanical behaviour of a monolithic Ni is not affected by crystalline orientation. To elucidate the effect of heterogeneous interface, three bilayer interface systems are constructed, namely Ni(100)/Cu(111), Ni(110)/Cu(111), and Ni(111)/Cu(111). The simulations along these systems clearly describe that mechanical behaviour directly depends on the lattice mismatch. The interface with smaller mismatch between the specified crystal planes is proved to be harder and vice versa. To describe the relationship between film thickness and interface effect, we choose various values of film thickness ranging from 20 Å to 50 Å to perform nanoindentation experiment. It is observed that the interface is significant only for the relatively small thickness of film and the separation between interface and the indenter tip. It is shown that with the increase in film thickness, the mechanical behaviour of film shifts more toward that of monolithic material.
Keywords:  nanoindentation      bilayer      molecular dynamics      thin film  
Received:  15 June 2012      Revised:  11 July 2012      Accepted manuscript online: 
PACS:  68.35.Ct (Interface structure and roughness)  
  68.35.Ja (Surface and interface dynamics and vibrations)  
Corresponding Authors:  Fayyaz Hussain     E-mail:  fiazz_hussain@yahoo.com

Cite this article: 

Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, S. A. Ahmad Molecular dynamics study of mechanical characteristics of Ni/Cu bilayer using nanoindentation 2012 Chin. Phys. B 21 126802

[1] Clemens B M, Kung H and Barnett S A 1999 Mater. Res. Soc. Bull. 24 20
[2] Misra A and Kung H 2001 Adv. Eng. Mater. 3 217
[3] Spearot D E, Tschopp M A, Jacob K I and McDowell D L 2007 Acta Mater. 55 705
[4] Li X and Bhushan B 2001 Thin Solid Films 313 398
[5] Xu Z H and Li X 2006 Acta Mater. 54 1699
[6] Li X, Bhushan B, Takashima K, Baek C W and Kim Y K 2003 Ultramicroscopy 97 481
[7] Ruud J A, Jervis T R and Spaepen F 1994 J. Appl. Phys. 75 4969
[8] Liu C L, Fang T H and Lin J F 2007 Mater. Sci. Eng. A 135 452
[9] Kang B C, Kim H Y, Kwon O Y and Hong S H 2007 Scr. Mater. 57 703
[10] Barshilia H C and Rajam K S 2002 Surf. Coat. Technol. 155 195
[11] Chudoba T, Schwarzer N, Richter F and Beck U 2000 Thin Solid Films 377 366
[12] Ni W, Cheng Y T, Cheng C M and Grummon D 2004 J. Mater. Res. 191 49
[13] Peter Z Berke, Thierry and Massart J 2012 Tribology International 47 167
[14] Landman U, Luedtke W D, Burnham N A and Colton R J 1990 Science 248 454
[15] Li X and Bhushan B 1998 Thin Solid Films 315 214
[16] Fang T H and Chang W J 2004 Microelectron. J. 35 595
[17] Cheong W C D and Zhang L C 2000 Nanotechnology 11 173
[18] Demidova N V, Wu X J and Liu R 2012 Eng. Frac. Mech. 82 17
[19] Lin Y, Xu Z H, Debin S and Bin G 2012 Appl. Surf. Sci. 258 6111
[20] Prasad M J N V and Chokshi A H 2012 Scripta Mater. 67 133
[21] Ma Z S, Zhou Y C, Long S G and Lu C 2012 Int. J. Plasticity 34 1
[22] Ping P, Guanglan L, Tielin S, Zirong T and Yang G 2010 Appl. Surf. Sci. 256 6284
[23] Saraev D and Ronald E M 2006 Acta Mater. 54 33
[24] Ranjana S and William D N 2002 Acta Mater. 50 23
[25] Haiyi L, Woo C H, Hanchen H, Ngan A H W and Yu T X 2004 CMES 6 105
[26] Liosatos N, Romanov A E, Zaiser M and Aifantis E C 1998 Scripta Mater. 38 819
[27] Tsakalakos T and Hilliard J E 1983 J. Appl. Phys. 54 734
[28] Baral D 1983 Ph. D. Thesis, Northwestern University
[29] Baral D, Ketterson J B and Hilliard J E 1984 Modulated Structure Mater. ed. Tsakalakos T (Martinus Nijhoff: Dordreeht) p. 465
[30] Liu Y, Bufford D, Wang H, Sun C and Zhang X 2011 Acta Mater. 59 1924
[31] Foiles S M, Baskes M I and Daw M S 1986 Phys. Rev. B 33 7983
[32] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[33] Chang W Y, FangW Y, Lin S J and Huang J J 2010 Molecular Simulation 36 815
[34] Plimpton S J 1995 J. Compd. Phys. 117 1
[35] Saez J C J, Vazquez J D, Martin A M C P and Rodriguez J J J 2002 Nucl. Instr. & Method Phys. Res. B 193 359
[36] Visual molecular dynamics VMD http://www.ks.uiuc.edu.
[37] Greer J R and Nix W D 2005 Appl. Phys. A 80 1625
[38] Carrasco E, Fuente O R, Gonzalez M A and Rojo J M 2003 Phys. Rev. B 68 180102
[39] Tang Q H, Yang T Y and Ding L 2010 Chin. Phys. Lett. 27 026104
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[8] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[9] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[10] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[11] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[12] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[13] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[14] Topological Lifshitz transition and novel edge states induced by non-Abelian SU(2) gauge field on bilayer honeycomb lattice
Wen-Xiang Guo(郭文祥) and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(5): 057302.
[15] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
No Suggested Reading articles found!