Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 126803    DOI: 10.1088/1674-1056/21/12/126803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A density-functional theory investigation on disorption of O2 on Sn(111) and its comparison with initial oxidation on the X(111) (X=Si, Ge, Sn, Pb) surfaces

Hu Zi-Yu (胡自玉), Wan Ping-Yu (万平玉), Hou Zhi-Ling (侯志灵), Shao Xiao-Hong (邵晓红)
College of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  The first-principles calculations are performed to investigate the adsorption of O2 molecules on an Sn(111) 2×2 surface. The chemisorbed adsorption precursor states for O2 are identified to be along the parallel and vertical channels, and the surface reconstructions of Sn(111) induced by oxygen adsorption are studied. Based on this, the adsorption behaviours of O2 on X(111) (X=Si, Ge, Sn, Pb) surfaces are analysed, and the most stable adsorption channels of O2 on X(111) (X=Si, Ge, Sn, Pb) are identified. The surface reconstructions and electron distributions along the most stable adsorption channels are discussed and compared. The results show that the O2 adsorption ability declines gradually and the amount of charge transferred decreases with the enhancement of metallicity.
Keywords:  O2 adsorption      Sn(111) surface      precursor states      surface reconstructions  
Received:  01 April 2012      Revised:  10 June 2012      Accepted manuscript online: 
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  81.65.Mq (Oxidation)  
  87.57.nf (Reconstruction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51102009) and the Fundamental Research Funds for the Central Universities, China (Grant No. JD1109).
Corresponding Authors:  Shao Xiao-Hong     E-mail:  shaoxh@mail.buct.edu.cn

Cite this article: 

Hu Zi-Yu (胡自玉), Wan Ping-Yu (万平玉), Hou Zhi-Ling (侯志灵), Shao Xiao-Hong (邵晓红) A density-functional theory investigation on disorption of O2 on Sn(111) and its comparison with initial oxidation on the X(111) (X=Si, Ge, Sn, Pb) surfaces 2012 Chin. Phys. B 21 126803

[1] Yamazoe N 1991 Sens. Actuators B 5 7
[2] Gardner J W and Bartlett P N 1994 Sens. Actuators B 18 211
[3] Seiyama T, Kato A, Fujiishi K and Nagatani M 1962 Anal. Chem. 34 1502
[4] Ihogura K and Watson J 1993 Stannic Oxide Gas Sensors (Tokyo: CRC Press)
[5] Batzill M 2006 Sensors-Basel 6 1345
[6] Nagasawa Y, Choso T, Karasuda T, Shimomura S, Ouyang F, Tabata K and Yamaguchi Y 1999 Surf. Sci. 226 433
[7] Yamaguchi Y, Nagasawa Y, Murakami A and Tabata K 1998 Int. J. Quantum Chem. 69 669
[8] Yamaguchi Y, Nagasawa Y, Shimomura S and Tabata K 1999 Int. J. Quantum Chem. 74 423
[9] Henrich V E and Cox P A 1994 The Surface Science of Metal Oxides (Cambridge: Cambridge University Press) p. 247
[10] Batzill M and Diebold U 2005 Prog. Surf. Sci. 79 47
[11] Boggs W E, Kachik R H and Pellissier G E 1961 J. Electrochem. Soc. 108 1
[12] Powell R A and Spicer W E 1976 Surf. Sci. 55 681
[13] Powell R A 1979 Appl. Surf. Sci. 3 379
[14] Stander C M 1983 Appl. Surf. Sci. 16 463
[15] Kung H H 1989 Transition Metal Oxides, Surface Chemistry and Catalysis (Amsterdam: Elsevier) pp. 259-273
[16] Somorjai G A 1994 Annual Review of Physical Chemistry 45 721-751
[17] Schell-Sorokin A J and Demuth J E 1985 Surf. Sci. 157 273
[18] Silvestre C and Shayegan M 1998 Phys. Rev. B 37 10432
[19] Surnev L and Tikhov M 1982 Surf. Sci 123 505
[20] Yang Y, Zhou G, Wu J, Duan W H, Xue Q K, Gu B L, Jiang P, Ma X C and Zhang S B 2008 J. Chem. Phys. 128 164705
[21] Ma H F, Xu M C, Yang B, Shi D X, Guo H M, Pang S J and Gao H J 2007 Chin. Phys. 16 2661
[22] Lu H, Wang X D, Motai K, Hashizume T and Sakurai T 1992 Acta Phys. Sin. (Overseas Edition) 1 191
[23] Yang Y 2010 Chin. Phys. B 19 108201
[24] Hu Z Y, Yang Y, Sun B, Zhang P, Wang W C and Shao X H 2012 Chin. Phys. B 21 016801
[25] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 and references therein
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Teter M P, Payne M C and Allan D C 1989 Phys. Rev. B 40 12255
[28] Weinert M and Davenport J W 1992 Phys. Rev. B 45 13709
[29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[30] Kittel C 1976 Introduction to Solid State Physics (New York: Wiley) p. 368
[31] Huber K P and Herzberg G 1979 Constants of Diatomic Molecules (New York: Van Nostrand) p. 494
[32] Hoshino T and Nishioka Y 2007 Phys. Rev. B 61 7
[33] Ibach H, Bruchmann H D and Wagner H 1982 Appl. Phys. A: Solids Surf. 29 113
[34] Ibach H, Horn K, Dorn R and LÄuth H 1973 Surf. Sci. 38 433
[35] HÄofer U, Morgen P, Wurth W and Umbach E 1985 Phys. Rev. Lett. 55 2979
[36] Bozso F and Avouris Ph 1991 Phys. Rev. B 44 9129
[37] Comtet G, Dujardin G, Hellner L, Hirayama T, Rose M, Philippe L and Besnard-Ramage M J 1995 Surf. Sci. 331 370
[38] Sakamoto K, Doi S, Ushimi Y, Ohno K, Yeom H W, Ohta T, Suto S and Uchida W 1999 Phys. Rev. B 60 R8465
[39] Fan X L, Lau W M and Liu Z F 2009 J. Phys. Chem. C 113 8786
[1] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[2] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[3] MgO-decorated carbon nanotubes for CO2 adsorption: first principles calculations
Zhu Feng(朱峰), Dong Shan(董珊), and Cheng Gang(承刚). Chin. Phys. B, 2011, 20(7): 077103.
No Suggested Reading articles found!