Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 126101    DOI: 10.1088/1674-1056/21/12/126101

The response of temperature and hydrostatic pressure of zinc-blende GaxIn1-xAs semiconducting alloys

A. R. Degheidy, E. B. Elkenany
Department of Physics, Faculty of Science, Mansoura University, P. O. Box: 35516, Mansoura, Egypt
Abstract  The electronic band structure of GaxIn1-xAs alloy is calculated by the local empirical pseudo-potential method including the effective disorder potential in the virtual crystal approximation. The compositional effect of the electronic energy band structure of this alloy is studied with composition x ranging from 0 to 1. Various physical quantities such as band gaps, bowing parameters, refractive indices, and high frequency dielectric constants of the considered alloys with different Ga concentrations are calculated. The effects of both temperature and hydrostatic pressure on the calculated quantities are studied. The obtained results are found o be in good agreement with the available experimental and published data.
Keywords:  temperature      hydrostatic pressure to GaxIn1-xAs alloys  
Received:  24 April 2012      Revised:  09 June 2012      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  61.82.Fk (Semiconductors)  
  73.20.At (Surface states, band structure, electron density of states)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
Corresponding Authors:  E. B. Elkenany     E-mail:

Cite this article: 

A. R. Degheidy, E. B. Elkenany The response of temperature and hydrostatic pressure of zinc-blende GaxIn1-xAs semiconducting alloys 2012 Chin. Phys. B 21 126101

[1] Chu J and Sher A 2008 Physics and Properties of Narrow Gap Semiconductors (Berlin: Springer)
[2] Scheel H J and Fukuda T 2003 Crystal Growth Technology (New York: Wiley)
[3] Saxen A K 1980 J. Phys. C 13 4323
[4] Bouarissa N 1998 Phys. Lett. A 245 285
[5] Mezrag F, Aouina N Y and Bouarissa N 2006 J. Mater. Sci. 41 5323
[6] Bouarissa N 2001 Mater. Sci. Eng. B 86 53
[7] Adachi S 1985 J. Appl. Phys. 3 58
[8] Bouarissa N and Aourag H 1999 Infrared Phys. Technol. 40 343
[9] Driz M, Badi N, Soudini B, Amrane N, Abid H, Bouarissa N, Khelifa B and Aourag H 1994 Comput. Mater. Sci. 2 287
[10] Boucenna M and Bouarissa N 2005 Czechoslovak. J. Phys. 55 1
[11] Boucenna M and Bouarissa N 2004 Mater. Chem. Phys. 84 375
[12] Bouarissa N and Aourag H 1995 Mater. Sci. Eng. B 33 122
[13] Saib S, Bouarissa N, Hernandez P R and Munoz A 2007 Eur. Phys. J. B 60 435
[14] Harrison P 2005 Quantum Wells Wires and Quantum Dots, 2nd edn. Chap. 11 (New York: Wiley)
[15] Ridley B K 1999 Quantum Processes in Semiconductors, 4th edn. Chap. 1 (Oxford: Clarendon Press)
[16] Martin R M 2004 Electronic Structure Basic Theory and Practical Methods (Cambridge: Cambridge University Press) p. 204
[17] Philips J C and Klienman L 1959 Phys. Rev. 116 287
[18] Cohen M H and Heine V 1961 Phys. Rev. 122 1821
[19] Austin B J, Heine V and Sham L J 1962 Phys. Rev. 127 276
[20] Cohen M L and Bergstresser T K 1966 Phys. Rev. 141 780
[21] Elabsy A M and Elkenany E B 2010 Physica B 405 266
[22] Elabsy A M, Degheidy A R, Abdelwahed H G and Elkenany E B 2010 Physica B 405 3709
[23] Paul W 1959 J. Phys. Chem. Solids 8 196
[24] Zallen R and Paul W 1964 Phys. Rev. 134 A1628
[25] Samara G A 1983 Phys. Rev. B 27 3494
[26] Welber B, Cardona M, Kim C K and Rodriguez S 1975 Phys. Rev. B 12 5729
[27] Tsay Y F, Gong B, Mitra S S and Vetelino J F 1972 Phys. Rev. B 6 2330
[28] Skelton E F, Radoff P L, Bolsaitis P and Verbalis A 1972 Phys. Rev. B 5 3008
[29] Walter J P and Cohen M L 1969 Phys. Rev. 183 763
[30] Adachi S 2005 Properties of Group IV, III-V, and II-VI Semiconductors, Chap. 2 (New York: Wiley)
[31] Peter Y U and Cardona M 2010 Fundamentals of Semiconductors, Physics and Materials Properties 4th edn. (Berlin: Springer)
[32] Degheidy A R and Elkenany E B 2011 Semiconductors 45 1251
[33] Lee H J, Juravel L Y, Woolley J C and Thorpe A J 1980 Phys. Rev. B 21 659
[34] Bouarissa N and Aourag H 1995 Phys. Status Solidi B 190 227
[35] Zunger A and Mader K A 1995 Phys. Rev. B 51 10462
[36] Vegard L 1921 Phys. 5 17
[37] Nasrallah A, Afia S B, Belmabrouk H and Said M 2005 Eur. Phys. J. B 43 3
[38] Moss T S 1985 Phys. Status Solidi B 131 415
[39] Ravindra N M and Srivastava V K 1979 Infrared Phys. 19 603
[40] Gupta V P and Ravindra N M 1980 Phys. Status Solidi B 100 715
[41] Herve P J L and Vandamme L K J 1994 Infrared Phys. Technol. 35 609
[42] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[43] Levinshtein M, Rumyantsev S and Shur M 1996 Handbook Series on Semiconductor Parameters (Singapore: World Scientific )
[44] Varshni Y P 1967 Physica 34 149
[45] Aspnes D E, Olson C G and Lynch D W 1976 Phys. Rev. Lett. 37 766
[46] Adachi S 1987 J. Appl. Phys. 61 4869
[47] Nag B R 1995 Infrared Phys. Technol. 36 831
[48] Escalanti L and Hart G L W 2004 Appl. Phys. Lett. 84 5
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[4] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[7] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[8] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[9] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[10] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[11] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[12] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[13] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[14] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[15] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
No Suggested Reading articles found!