Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 123402    DOI: 10.1088/1674-1056/21/12/123402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Quasiclassical calculation of the chemical reaction Ba+C3H7Br→BaBr+C3H7

Jiang Yong-Chao (姜永超), Li Gui-Xia (李桂霞), Shi Xiao-Feng (史晓凤), Huang Shu-Lai (黄树来)
Qingdao Agriculture University, Qingdao 266109, China
Abstract  The quasi-classical trajectory (QCT) method based on extended the London-Eyring-Polanyi-Sato potential energy surface is used to investigate the product vibrational distribution, angular distribution and angle resolved kinetic distribution of the reaction Ba+C3H7 Br→ BaBr+C3H7 at 2.58 kcal/mol. The calculated results show that the product BaBr vibrational distribution is quite hot, the vibrational population peaks are located at ν= 12, and the angular product distribution tends to backward scattering. The calculated angle resolved kinetic distribution shows that the kinetic distribution is obviously related to angle. The QCT results are always qualitatively acceptable and sometimes even quantitatively.
Keywords:  quasi-classical trajectory      vibrational distribution      potential energy surface  
Received:  16 May 2012      Revised:  04 June 2012      Accepted manuscript online: 
PACS:  34.50.Lf (Chemical reactions)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 40906051).
Corresponding Authors:  Shi Xiao-Feng     E-mail:  sxfhyz@126.com

Cite this article: 

Jiang Yong-Chao (姜永超), Li Gui-Xia (李桂霞), Shi Xiao-Feng (史晓凤), Huang Shu-Lai (黄树来) Quasiclassical calculation of the chemical reaction Ba+C3H7Br→BaBr+C3H7 2012 Chin. Phys. B 21 123402

[1] Sigel A and Schultz A1980 J. Chem. Phys. 72 6227
[2] Han K L, He G Z and Lou N Q 1991 Chem. Phys. Lett. 178 528
[3] Han K L, He G Z and Lou N Q 1993 Chem. Phys. Lett. 203 509
[4] Zhang X, Xie T X, Zhao M Y and Han K L 2002 Chin. J. Chem. Phys. 15 169
[5] Wang M L, Han K L, Zhan J P, Wu V, He G Z and Lou N Q 1997 J. Chem. Phys. 278 307
[6] Cai M Q, Zhang L, Tang B Y, Chen M D, Yang G W and Han K L 2000 Chem. Phys. 255 283
[7] Han K L, Mo Y X, He G Z and Lou N Q 1990 Acta Physico-Chemica Sinica 6 376
[8] Han K L, Zheng X G, Sun B F and He G Z 1991 Chem. Phys. Lett. 181 474
[9] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[10] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[11] Porter R N and Raff M L 1976 Dynamics of Molecule Collision ed. W. H. Miller (New York: Plenum Press) Part B
[12] Truhlar D G and Muckerman J T 1976 Atom-Molecule Collision Theory ed. R. B. Bernstein (New York: Plenum Press) p. 505
[13] Yue X F 2012 Chin. Phys. B 21 073401
[14] Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
[15] Li H, Zheng B, Yin J Q and Meng Q T 2011 Chin. Phys. B 20 123401
[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[3] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[4] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[5] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[6] Collision of cold CaF molecules: Towards evaporative cooling
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(3): 033401.
[7] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[8] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[9] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[10] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[11] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[12] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[13] Accurate double many-body expansion potential energy surface of HS2(A2A') by scaling the external correlation
Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Shou-Bao Gao(高守宝), Yuan Zhang(张媛), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2016, 25(5): 053101.
[14] Catalytic reduction of N2O by CO over PtlAum- clusters:A first-principles study
Mi Hong (米鸿), Wei Shi-Hao (韦世豪), Duan Xiang-Mei (段香梅), Pan Xiao-Yin (潘孝胤). Chin. Phys. B, 2015, 24(9): 098201.
[15] Globally accurate ab initio based potential energy surface of H2O+(X4A")
Song Yu-Zhi (宋玉志), Zhang Yuan (张媛), Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(6): 063101.
No Suggested Reading articles found!