Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 116201    DOI: 10.1088/1674-1056/21/11/116201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dynamic characteristics of nanoindentation in Ni: A molecular dynamics simulation study

Muhammad Imrana, Fayyaz Hussaina b, Muhammad Rashida, S. A. Ahmada
a Department of Physics Simulation Lab, Islamia University of Bahawalpur 63100, Pakistan;
b Department of Physics, National University of Singapore 117542, Singapore
Abstract  In the present work, three-dimensional molecular dynamics simulation is carried out to elucidate the nanoindentation behaviour of single crystal Ni. The substrate indenter system is modeled using hybrid interatomic potentials including manybody potential (embedded atom method) and two-body Morse potential. Spherical indenter is chosen, and the simulation is performed for different loading rates from 10 m/s to 200 m/s. Results show that the maximum indentation load and hardness of the system increase with the increase of velocity. The effect of indenter size on the nanoindentation response is also analysed. It is found that the maximum indentation load is higher for large indenter whereas the hardness is higher for smaller indenter. Dynamic nanoindentation is carried out to investigate the behaviour of Ni substrate to multiple loading-unloading cycles. It is observed from the results that the increase in the number of loading unloading cycles reduces the maximum load and hardness of the Ni substrate. This is attributed to the decrease in recovery force due to defects and dislocations produced after each indentation cycle.
Keywords:  indentation      nanocrystalline      loading-unloading      dislocation  
Received:  10 May 2012      Revised:  01 June 2012      Accepted manuscript online: 
PACS:  62.23.-c (Structural classes of nanoscale systems)  
  62.20.F- (Deformation and plasticity)  
  62.20.mt (Cracks)  
Fund: Project supported by HEC, Pakistan.
Corresponding Authors:  Fayyaz Hussain     E-mail:  fiazz_hussain@yahoo.com

Cite this article: 

Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, S. A. Ahmad Dynamic characteristics of nanoindentation in Ni: A molecular dynamics simulation study 2012 Chin. Phys. B 21 116201

[1] Ziegenhain G, Hermair A and Urbassek H M 2009 J. Mech. Phys. Solids 57 1514
[2] Cripps F A C 2004 Nanoindentation (2nd edn.) (New York: Springer)
[3] Cripps F A C 2007 Introduction to contact Mechanics (2nd edn.) (New York: Springer)
[4] Landman U, Luedtke W D, Burnham N A and Colton R J 1990 Science 248 454
[5] Li X and Bhushan B 1998 Thin Solid Films 315 214
[6] Fang T H and Chang W J 2004 Microelectron J. 35 595
[7] Cheong W C D and Zhang L C 2000 Nanotechnology 11 173
[8] Lee Y, Park J Y, Kim S Y, Jun S and Im S 2005 Mech. Mater. 37 1035
[9] Gerberich W W, Tymiak N I, Grunlan J C, Horstemeyer M F and Baskes M I 2002 J. Appl. Mech. 69 433
[10] Schall J D and Brenner D W 2004 J. Mater. Res. 19 3172
[11] Demidova N V, Wu X J and Liu R 2012 Eng. Fract. Mech. 82 17
[12] Yuan L, Xu Z, Shan D and Guo B 2012 Appl. Surf. Sci. 258 6111
[13] Prasad M J N V and Chokshi A H 2012 Scripta Mater. 67 133
[14] Ma Z S, Zhou Y C, Long S G and Lu C 2012 Int. J. Plasticity 34 1
[15] Peng P, Lio G, Shi T, Tang Z and Gao Y 2010 Appl. Sur. Sci. 256 6284
[16] Begau C, Hartmaier A, George E P and Pharr G M 2011 Acta Mater. 59 934
[17] Saraev D and Miller R E 2006 Acta Mater. 54 33
[18] Kum O 2005 Mol. Simul. 31 115
[19] Chang W Y, Fang T H, Lin S J and Huang J J 2010 Mol. Simulat. 36 815
[20] Oluwajobi A and Chen X 2011 Int. J. Auto. Comput. 8 326
[21] Jiuhui L, Xing Z, Shaoqing W and Caibei Z 2010 Journal of Wuhan University of Technology-Mater. Sci. Ed. June 423
[22] Nair A K, Gaudreau E P, Farkas D and Kriz R D 2008 Int. J. Plasticity 24 2016
[23] Pei Q X, Lu C, Lee H P and Zhang Y W 2009 Nanoscale Res. Lett. 4 444
[24] Sansoz F and Dupont V 2010 Scripta Mater. 63 1136
[25] Foiles S M, Baskes M I and Daw M S 1986 Phys. Rev. B 33 7983
[26] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[27] Maekawa K and Itoh A 1995 Wear 188 115
[28] Plimpton S J 1995 J. Comput. Phys. 117 1
[29] Kelchner C L , Plimpton S J and Hamilton J C 1998 Phys. Rev. B 58 11085
[30] Saraev D and Miller R E 2006 Acta Mater. 54 33
[31] Saha R and Nix W D 2002 Acta Mater. 50 23
[32] Gerberich W W, Tymyak N I, Grunlan J C, Horstemeyer M F and Baskes M I 2002 J. Appl. Mech. 69 433
[33] Nix W and Gao H 1998 J. Mech. Phys. Solids 46 411
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[7] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[8] Weakening effect of plastic yielding inception in thin hard coating systems
Xiao Huang(黄啸), Shujun Zhou(周述军), and Tianmin Shao(邵天敏). Chin. Phys. B, 2021, 30(3): 038104.
[9] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[10] Atomistic simulations on adhesive contact of single crystal Cu and wear behavior of Cu-Zn alloy
You-Jun Ye(叶有俊), Le Qin (秦乐), Jing Li (李京), Lin Liu(刘麟), and Ling-Kang Wu(吴凌康). Chin. Phys. B, 2021, 30(2): 026801.
[11] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[12] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[13] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[14] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[15] Modification of the Peierls-Nabarro model for misfit dislocation
Shujun Zhang(张淑君), Shaofeng Wang(王少峰). Chin. Phys. B, 2020, 29(5): 056102.
No Suggested Reading articles found!