Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 108101    DOI: 10.1088/1674-1056/21/10/108101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Quantum dots-templated growth of strain-relaxed GaN on a c-plane sapphire by radio-frequency molecular beam epitaxy

Guo Hao-Min (郭浩民), Wen Long (文龙), Zhao Zhi-Fei (赵志飞), Bu Shao-Jiang (步绍姜), Li Xin-Hua (李新化), Wang Yu-Qi (王玉琦)
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  We investigated the quantum dots-templated growth of a (0001) GaN film on a c-plane sapphire substrate. The growth was carried out in a radio-frequency molecular beam epitaxy system. The enlargement and coalescence of grains on the GaN quantum dots template was observed in the atom force microscopy images, as well as the more ideal surface morphology of the GaN epitaxial film on the quantum dots template compared with the one on the AlN buffer. The Ga polarity was confirmed by the reflected high energy electron diffraction patterns and the Raman spectra. The significant strain relaxation in the quantum dots-templated GaN film was calculated based on the Raman spectra and the X-ray rocking curves. Meanwhile, the threading dislocation density in the quantum dots-templated film was estimated to be 7.1×107 cm-2, which was significantly suppressed compared with that of the AlN-buffered GaN film. The room-temperature Hall measurement showed an electron mobility of up to 1860 cm2/V·s in the two-dimensional electron gas at the interface of the Al0.25Ga0.75N/GaN heterojunction.
Keywords:  III-V semiconductor      radio-frequency molecular beam epitaxy      dislocation  
Received:  30 March 2012      Revised:  18 April 2012      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 1179042).
Corresponding Authors:  Li Xin-Hua     E-mail:  xinhuali@issp.ac.cn

Cite this article: 

Guo Hao-Min (郭浩民), Wen Long (文龙), Zhao Zhi-Fei (赵志飞), Bu Shao-Jiang (步绍姜), Li Xin-Hua (李新化), Wang Yu-Qi (王玉琦) Quantum dots-templated growth of strain-relaxed GaN on a c-plane sapphire by radio-frequency molecular beam epitaxy 2012 Chin. Phys. B 21 108101

[1] Pearton S J, Zolper J C and Shul R J 1999 J. Appl. Phys. 86 1
[2] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[3] Lim Wantae, Jeong Jae-Hyun, Lee Jae-Hoon, Hur Seung-Bae, Ryu Jong-Kyu, Kim Ki-Se, Kim Tae-Hyung, Song Sang Yeob, Yang Jong-In and Pearton S J 2011 Appl. Phys. Lett. 97 242103
[4] Speck J S and Rosner S J 1999 Physica B 274 24
[5] Qiu K, Zhong F, Li X H, Yin Z J, Ji C J, Han Q F, Chen J R, Cao X C and Wang Y Q 2007 Chin. Phys. 16 282
[6] Shen X Q, Ide T, Cho S H, Shimizu M, Hara S, Okumura H, Sonoda S and Shimizu S 2000 J Cryst. Growth 218 155
[7] Smith A R, Feenstra R M, Greve D W, Negebauer J and Northrup J E 1997 Phys. Rev. Lett. 79 3934
[8] Zhong F, Qiu K, Li X H, Yin Z J, Xie X J, Wang Y, Ji C J, Cao X C, Han Q F, Chen J R and Wang Y Q 2007 Chin. Phys. Lett. 24 240
[9] Craven M D, Lim S H, Wu F, Speck J S and DenBaars S P 2002 Appl. Phys. Lett. 81 469
[10] Chakraborty A, Kim K C, Wu F, Speck J S, DenBaars S P and Mishra U K 2006 Appl. Phys. Lett. 89 41903
[11] Seon M, Prokofyeva T and Holtz M 2000 Appl. Phys. Lett. 76 14
[12] Gibart P 2004 Rep. Prog. Phys. 67 667
[13] Okada N, Kawashima Y and Tadatomo K 2008 Appl. Phys. Express 1 111101
[14] Chiu C H, Yen H H, Chao C L, Li Z Y, Yu P C, Kuo H C, Lu T C, Wang C C, Lau K M and Cheng S J 2008 Appl. Phys. Lett. 93 081108
[15] Li Q M, Lin Y, Creighton J R, Figiel J J and Wang G T 2009 Adv. Mater. 21 2416
[16] Ku J T, Yang T H, Chang J R, Wong Y Y, Chou W C, Chang C Y and Chen C Y 2010 Jpn. J. Appl. Phys. 49 04DH06
[17] Gogneau N, Jalabert D and Monroy E 2003 J. Appl. Phys. 94 4
[18] Xu T, Zhou L, Wang Y Y, Özcan A S, Ludwig K F, Smith D J and Moustakas T D 2007 J. Appl. Phys. 102 073517
[19] Simon R J, Pelekanos N, Daudin B and Feuillet G 1999 Appl. Phys. Lett. 75 2639
[20] Zhong F, Li X H, Qiu K, Yin Z J, Ji C J, Cao X C, Han Q F, Chen J R and Wang Y Q 2007 Chin. Phys. 16 2786
[21] Peng C X, Weng H M, Zhu C F, Ye B J, Zhou X Y, Han R D, Fong W K and Surya C 2007 Physica B 391 6
[22] Goni A R, Siegle H, Syassen K, Thomsen C and Wagner J M 2001 Phys. Rev. B 64 035205
[23] Vispute R D and Talyansky V 1997 App. Phys. Lett. 70 2735
[24] Wright A F 1997 J. Appl. Phys. 82 2833
[25] Ide T, Shimizu M, Shen X Q, Jeganathan K, Okumura H and Nemoto T 2002 J. Cryst. Growth 245 15
[26] Zheng X H, Chen H, Yan Z B, Han Y J, Yu H B, Li D S, Huang Q and Zhou J M 2003 J. Cryst. Growth 255 63
[27] Perlin P, Jauberthie-Carillon C, Itie J P, Miguel A S, Grzegroy I and Polian A 1992 Phys. Rev. B 45 83
[28] Liu Z Y, Zhang J C, Duan H T, Xue J S, Lin Z Y, Ma J C, Xue X Y and Hao Y 2011 Chin. Phys. B 20 097701
[29] Shimizu M, Chonan H, Piao G X, Okumura H and Nakanishi H 2006 Mater. Sci. Forum. 527-529 1493
[30] Lu L W, Fong W K, Zhu C F, Leung B H, Surya C, Wang J and Ge W 2002 J. Cryst. Growth 234 99
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[5] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[6] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[7] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[8] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[9] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[10] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[11] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[12] Modification of the Peierls-Nabarro model for misfit dislocation
Shujun Zhang(张淑君), Shaofeng Wang(王少峰). Chin. Phys. B, 2020, 29(5): 056102.
[13] Non-equilibrium atomic simulation for Frenkel–Kontorova model with moving dislocation at finite temperature
Baiyili Liu(刘白伊郦) and Shaoqiang Tang(唐少强). Chin. Phys. B, 2020, 29(11): 110501.
[14] Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics
Fang-Biao Li(李芳镖), Guang Ran(冉广), Ning Gao(高宁), Shang-Quan Zhao(赵尚泉), Ning Li(李宁). Chin. Phys. B, 2019, 28(8): 085203.
[15] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
No Suggested Reading articles found!