Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 104101    DOI: 10.1088/1674-1056/21/10/104101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Finger capacitance of a terahertz photomixer in low-temperature-grown GaAs using the finite element method

Chen Long-Chao (陈龙超), Fan Wen-Hui (范文慧)
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
Abstract  Interdigitated finger capacitance of a continuous-wave terahertz photomixer is calculated using the finite element method. For the frequently used electrode width (0.2 μm) and gap width (1.8 μm), the finger capacitance increases quasi-quadratically with the number of electrodes increasing. The quasi-quadratic dependence can be explained by a sequence of lumped capacitors connected in parallel. For a photomixer composed of 10 electrodes and 9 photoconductive gaps, the finger capacitance increases as the gap width increases at a small electrode width, and follows the reverse trend at a large electrode width. For a constant electrode width, the finger capacitance first decreases and then slightly increases as the gap broadens until the smallest finger capacitance is formed. We also investigate the finger capacitances at different electrode and gap configurations with the 8 μm ×8 μm photomixer commonly used in previous studies. These calculations lead to a better understanding of the finger capacitance affected by the finger parameters, and should lead to terahertz photomixer optimization.
Keywords:  terahertz photomixer      continuous-wave      interditated finger capacitance      finite element method  
Received:  15 January 2012      Revised:  12 March 2012      Accepted manuscript online: 
PACS:  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
  02.70.Dh (Finite-element and Galerkin methods)  
  42.72.Ai (Infrared sources)  
Corresponding Authors:  Fan Wen-Hui     E-mail:  fanwh@opt.ac.cn

Cite this article: 

Chen Long-Chao (陈龙超), Fan Wen-Hui (范文慧) Finger capacitance of a terahertz photomixer in low-temperature-grown GaAs using the finite element method 2012 Chin. Phys. B 21 104101

[1] Brown E R, Smith F W and McIntosh K A 1993 J. Appl. Phys. 73 1480
[2] Verghese S, McIntosh K A and Brown E R 1997 IEEE Trans. Microw. Theory Tech. 45 1301
[3] Gregory I S, Tribe W R, Cole B E, Baker C, Evans M J, Bradley I V, Linfield E H, Davies A G and Missous M 2004 Electron. Lett. 40 143
[4] Stanze D, Deninger A, Roggenbuck A, Schindler S, Schlak M and Sartorius B 2011 J. Infrared Milli. Terahz. Waves 32 225
[5] Marazita S, Hui K, Hesler J, Bishop W and Crowe T 1999 Proc. 10th Int. Symp. on Space THz Tech. April 20-22, 1999, Charlottesville, USA, p. 74
[6] Pine A S, Suenram R D, Brown E R and McIntosh K A 1996 J. Mol. Spectros. 175 37
[7] Plusquellic D F, Korter T M, Fraser G T, Lavrich R J, Benck E C, Bucher C R, Walker A R H and Domenech J L 2003 Int. J. High Speed Electron. Syst. 13 385
[8] Knobloch P, Schildknecht C, Ostmann T K, Koch M, Hoffmann S, Hofmann M, Rehberg E, Sperling M, Donhuijsen K, Hein G and Pierz K 2002 Phys. Med. Biol. 47 3875
[9] Preu S, Dohler G H, Malzer S, Wang L J and Gossard A C 2011 J. Appl. Phys. 109 061301
[10] Gregory I S, Baker C, Tribe W R, Evans M J, Beere H E, Linfield E H, Davies A G and Missous M 2003 Appl. Phys. Lett. 83 4199
[11] Gupta S, Frankel M Y, Valdmanis J A, Whitaker J F, Mourou G A, Smith F W and Calawa A R 1991 Appl. Phys. Lett. 59 3276
[12] Zhou W M, Wang C Y, Chen Y H and Wang Z G 2006 Chin. Phys. 13 1742
[13] Ralph S E and Grischkowsky D 1991 Appl. Phys. Lett. 59 1972
[14] Mangeney J, Merigault A, Zerounian N, Crozat P, Blary K and Lampin J F 2007 Appl. Phys. Lett. 91 241102
[15] Hindle F, Cuisset A, Bocquet R and Mouret G 2008 C. R. Physique 9 262
[16] Lim Y C and Moore R A 1968 IEEE Trans. Electron. Dev. ED-15 173
[17] Brown E R, McIntosh K A, Nichols K B and Dennis C 1995 Appl. Phys. Lett. 66 285
[18] McIntosh K A, Brown E R, Nichols K B, McMahon O B, DiNatale W F and Lyszczarz T M 1995 Appl. Phys. Lett. 67 3844
[19] Gregory I S, Baker C, Tribe W R, Bradley I V, Evans M J, Linfield E H, Davies A G and Missous M 2005 IEEE J. Quantum Electron. 5 717
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[3] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[4] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[5] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[6] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[7] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[8] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[9] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[10] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[11] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[12] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[13] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[14] Multi-wavelength continuous-wave Nd:YVO4 self-Raman laser under in-band pumping
Li Fan(樊莉), Xiao-Dong Zhao(赵孝冬), Yun-Chuan Zhang(张蕴川), Xiao-Dong Gu(顾晓东), Hao-Peng Wan(万浩鹏), Hui-Bo Fan(范会博), Jun Zhu(朱骏). Chin. Phys. B, 2019, 28(8): 084210.
[15] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
No Suggested Reading articles found!