ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Multi-wavelength continuous-wave Nd:YVO4 self-Raman laser under in-band pumping |
Li Fan(樊莉), Xiao-Dong Zhao(赵孝冬), Yun-Chuan Zhang(张蕴川), Xiao-Dong Gu(顾晓东), Hao-Peng Wan(万浩鹏), Hui-Bo Fan(范会博), Jun Zhu(朱骏) |
College of Physics Science and Technology, Institute of Applied Photonic Technology, Yangzhou University, Yangzhou 225002, China |
|
|
Abstract Multi-wavelength continuous-wave self-Raman laser with an a-cut composite YVO4/Nd:YVO4/YVO4 crystal pumped by an 879-nm wavelength-locked laser diode is demonstrated for the first time. Multi-wavelength Raman lasers at 1168.4, 1176, 1178.7, and 1201.6 nm are achieved by the first Stokes shift of the multi-wavelength fundamental lasers at 1064, 1066.7, 1073.6, 1084, and 1085.6 nm with two Raman shifts of 890 and 816 cm-1. A maximum Raman output power of 2.56 W is achieved through the use of a 20-mm-long composite crystal, with a corresponding optical conversion efficiency of 9.8%. The polarization directions of different fundamental and Raman lasers are investigated and found to be orthogonal π and σ polarizations. These orthogonally polarized multi-wavelength lasers with small wavelength separation pave the way to the development of a potential laser source for application in spectral analysis, laser radar and THz generation.
|
Received: 13 December 2018
Revised: 22 April 2019
Accepted manuscript online:
|
PACS:
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.55.Ye
|
(Raman lasers)
|
|
42.60.Pk
|
(Continuous operation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774301) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11804292). |
Corresponding Authors:
Li Fan
E-mail: fanli@yzu.edu.cn
|
Cite this article:
Li Fan(樊莉), Xiao-Dong Zhao(赵孝冬), Yun-Chuan Zhang(张蕴川), Xiao-Dong Gu(顾晓东), Hao-Peng Wan(万浩鹏), Hui-Bo Fan(范会博), Jun Zhu(朱骏) Multi-wavelength continuous-wave Nd:YVO4 self-Raman laser under in-band pumping 2019 Chin. Phys. B 28 084210
|
[1] |
Zhao P, Ragam S, Ding Y J and Zotova I B 2010 Opt. Lett. 35 3979
|
[2] |
Zhao P, Ragam S, Ding Y J and Zotova I B 2011 Appl. Phys. Lett. 98 131106
|
[3] |
Zhao P, Ragam S, Ding Y J and Zotova I B 2011 Opt. Lett. 36 4818
|
[4] |
Waritanant T and Major A 2017 Opt. Lett. 42 1149
|
[5] |
Shayeganrad G, Huang Y C and Mashhadi L 2012 Appl. Phys. B 108 67
|
[6] |
Shayeganrad G and Mashhadi L 2013 Appl. Phys. B 111 189
|
[7] |
Wu B, Jiang P P, Yang D Z, Chen T, Kong J and Shen Y H 2009 Opt. Express 17 6004
|
[8] |
Wang X Z, Yuan H Y, Wang M S and Huang W C 2016 Opt. Commun. 376 67
|
[9] |
Huang Y P, Cho C Y, Huang Y J and Chen Y F 2012 Opt. Express 20 5644
|
[10] |
Wang X L, Wang X J and Dong J 2018 IEEE J. Quantum Electron. 24 1400108
|
[11] |
Lin H Y, Huang X H, Sun D and Liu X 2016 J. Mod. Opt. 63 2235
|
[12] |
Lin H Y, Pan X, Huang X H, Xiao M, Liu X, Sun D and Zhu W Z 2016 Opt. Commun. 368 39
|
[13] |
Guo J H, Zhu H Y, Duan Y M, Xu C W, Ruan X K, Cui G H and Yan L F 2017 J. Opt. 19 035501
|
[14] |
Neto J J, Lin J P, Wetter N U and Pask H 2012 Opt. Express 20 9841
|
[15] |
Li R, Bauer R and Lubeigt W 2013 Opt. Express 21 17745
|
[16] |
Chang M T, Zhuang W Z, Su K W, Yu Y T and Chen Y F 2013 Opt. Express 21 24590
|
[17] |
Tang C Y, Zhuang W Z, Su K W and Chen Y F 2015 IEEE J. Quantum Electron. 21 1400206
|
[18] |
Lee C Y, Chang C C, Sung C L and Chen Y F 2015 Opt. Express 23 22765
|
[19] |
Wang X L, Dong J, Wang X J, Xu J, Ueda K I and Kaminskii A A 2016 Opt. Lett. 41 3559
|
[20] |
Murray J T, Austin W L and Powell R C 1999 Opt. Mater. 11 353
|
[21] |
Chen W D, Wei Y, Huang C H, Wang X L, Shen H Y, Zhai S Y, Xu S, Li B X, Chen Z Q and Zhang G 2012 Opt. Lett. 37 1968
|
[22] |
Sato Y and Taira T 2002 Jpn. J. Appl. Phys. 41 5999
|
[23] |
Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J and Tang D Y 2017 IEEE Photon. J. 9 1500807
|
[24] |
Shayeganrad G 2013 Opt. Commun. 292 131
|
[25] |
Sheng Q, Ding X, Li B, Yu X Y, Fan C, Zhang H Y, Liu J, Jiang P B, Zhang W, Wen W Q, Sun B and Yao J Q 2014 J. Opt. 16 105206
|
[26] |
Ding X, Fan C, Sheng Q, Li B, Yu X Y, Zhang G Z, Sun B, Wu L, Zhang H Y, Liu J, Jiang P B, Zhang W, Zhao C and Yao J Q 2014 Opt. Express 22 29121
|
[27] |
Fan L, Fan Y X and Wang H T 2010 Appl. Phys. B 101 493
|
[28] |
Turri G, Jenssen H P, Cornacchia F, Tonelli M and Bass M 2009 J. Opt. Soc. Am. B 26 2084
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|