Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 018901    DOI: 10.1088/1674-1056/21/1/018901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The excluded-volume effect in microscopic pedestrian simulations

Guo Ren-Yong(郭仁拥)a) and Guo Xi(郭喜)b)†
a College of Computer Science, Inner Mongolia University, Hohhot 010021, China; b School of Public Administration, Inner Mongolia University, Hohhot 010021, China
Abstract  We propose a pedestrian position update rule, which is added to a microscopic pedestrian model to avoid pedestrian overlap. In the rule, the step size of a pedestrian moving in a selected direction at each update is in inverse proportion to the repulsive actions imposed by other pedestrians moving in a direction with an exponential rate. The positions of the pedestrians are then updated in each small time interval. In this way, a barrier between the pedestrians can be generated, and after updating their positions the pedestrians do not overlap with each other. The modified model is compared to the original model through a simulation of the evacuation process of pedestrians in a closed area. The simulation results indicate that the modified model is superior to the original model in several aspects.
Keywords:  pedestrian model      excluded-volume effect      discrete dynamic system  
Received:  20 June 2011      Revised:  10 August 2011      Accepted manuscript online: 
PACS:  89.40.-a (Transportation)  
  45.70.-n (Granular systems)  
  05.65.+b (Self-organized systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 71001047), the Natural Science Foundation of Inner Mongolia, China (Grant No. 2010BS1001), and the Program of Higher-Level Talents of Inner Mongolia University, China (Grant

Cite this article: 

Guo Ren-Yong(郭仁拥) and Guo Xi(郭喜) The excluded-volume effect in microscopic pedestrian simulations 2012 Chin. Phys. B 21 018901

[1] Wen J, Tian H H and Xue Y 2010 Acta Phys. Sin. 59 3817 (in Chinese)
[2] Zeng G X and Xue Y 2011 Acta Phys. Sin. 60 014502 (in Chinese)
[3] Hughes R L 2002 Transp. Res. B 36 507
[4] Huang L, Wong S C, Zhang M, Shu C W and Lam W H K 2009 Transp. Res. B 43 127
[5] Jiang Y, Xiong T, Wong S C, Shu C W, Zhang M, Zhang P and Lam W H K 2009 Acta Math. Sci. 29 1541
[6] Helbing D and Molnár P 1995 Phys. Rev. E 51 4282
[7] Helbing D, Farkas I and Vicsek T 2000 Nature 407 487
[8] Lakoba T I, Kaup D J and Finkelstein N M 2005 Simulation 81 339
[9] Blue V J and Adler J L 2001 Transp. Res. B 35 293
[10] Burstedde C, Klauck K, Schadschneider A and Zittartz J 2001 Physica A 295 507
[11] Kirchner A and Schadschneider A 2002 Physica A 312 260
[12] Huang H J and Guo R Y 2008 Phys. Rev. E 78 021131
[13] Guo R Y and Huang H J 2008 J. Phys. A: Math. Theor. 41 385104
[14] Guo R Y and Huang H J 2010 Chin. Phys. B 19 030501
[15] Zhao H and Gao Z 2010 J. Phys. A: Math. Theor. 43 105001
[16] Yue H, Shao C F, Guan H Z and Duan L M 2010 Acta Phys. Sin. 59 4499 (in Chinese)
[17] Zhu K J and Yang L Z 2010 Acta Phys. Sin. 59 7701 (in Chinese)
[18] Qiu B, Tan H L, Kong L J and Liu M R 2004 Chin. Phys. 13 990
[19] Fukamachi M and Nagatani T 2007 Physica A 377 269
[20] Kuang H, Li X L, Wei Y F, Song T and Dai S Q 2010 Chin. Phys. B 19 070517
[21] Ma J, Song W G and Liao G X 2010 Chin. Phys. B 19 128901
[22] Hoogendoorn S P and Bovy P H L 2004 Transp. Res. B 38 169
[23] Antonini G, Bierlaire M and Weber M 2006 Transp. Res. B 40 667
[24] Robin T, Antonini G, Bierlaire M and Cru J 2009 Transp. Res. B 43 36
[25] Yanagisawa D, Tomoeda A, Jiang R and Nishinari K 2010 JSIAM Lett. 2 61
[26] Arita C and Yanagisawa D 2010 J. Stat. Phys. 141 829
[27] Hartmann D 2010 New J. Phys. 12 043032
[28] Asano M, Iryo T and Kuwahara M 2010 Transp. Res. C 18 842
[29] Guo R Y, Wong S C, Huang H J, Zhang P and Lam W H K 2010 Physica A 389 515
[30] Yu W J, Chen R, Dong L Y and Dai S Q 2005 Phys. Rev. E 72 026112
[31] Nakayama A, Hasebe K and Sugiyama Y 2005 Phys. Rev. E 71 036121
[32] Langston P A, Masling R and Asmar B N 2006 Safety Sci. 44 395
[33] Henderson L F 1971 Nature 229 381
[34] Fruin J J 1971 Pedestrian Planning and Design (New York: Metropolitan Association of Urban Designers and Environmental Planners)
[35] Young S B 1999 Transp. Res. Rec. 1674 20
[1] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[2] Investigating the characteristic delay time in the leader-follower behavior in children single-file movement
Shu-Qi Xue(薛书琦), Nirajan Shiwakoti, Xiao-Meng Shi(施晓蒙), and Yao Xiao(肖尧). Chin. Phys. B, 2023, 32(2): 028901.
[3] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[4] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[5] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[6] Passenger management strategy and evacuation in subway station under Covid-19
Xiao-Xia Yang(杨晓霞), Hai-Long Jiang(蒋海龙), Yuan-Lei Kang(康元磊), Yi Yang(杨毅), Yong-Xing Li(李永行), and Chang Yu(蔚畅). Chin. Phys. B, 2022, 31(7): 078901.
[7] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[8] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[9] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[10] Using agent-based simulation to assess diseaseprevention measures during pandemics
Yunhe Tong(童蕴贺), Christopher King, and Yanghui Hu(胡杨慧). Chin. Phys. B, 2021, 30(9): 098903.
[11] Experimental study on age and gender differences in microscopic movement characteristics of students
Jiayue Wang(王嘉悦), Maik Boltes, Armin Seyfried, Antoine Tordeux, Jun Zhang(张俊), and Wenguo Weng(翁文国). Chin. Phys. B, 2021, 30(9): 098902.
[12] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[13] A new heuristics model of simulating pedestrian dynamics based on Voronoi diagram
Xin-Sen Wu(武鑫森), Hao Yue(岳昊), Qiu-Mei Liu(刘秋梅), Xu Zhang(张旭), and Chun-Fu Shao(邵春福). Chin. Phys. B, 2021, 30(1): 018902.
[14] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[15] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
No Suggested Reading articles found!