Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 018702    DOI: 10.1088/1674-1056/21/1/018702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Symbolic transfer entropy-based premature signal analysis

Wang Jun(王俊) and Yu Zheng-Feng(余正锋)
Image Processing and Image Communications Key Laboratory, School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210003, China
Abstract  In this paper, we use symbolic transfer entropy to study the coupling strength between premature signals. Numerical experiments show that three types of signal couplings are in the same direction. Among them, normal signal coupling is the strongest, followed by that of premature ventricular contractions, and that of atrial premature beats is the weakest. The T test shows that the entropies of the three signals are distinct. Symbolic transfer entropy requires less data, can distinguish the three types of signals and has very good computational efficiency.
Keywords:  premature signal      symbolic transfer entropy      signal coupling  
Received:  06 July 2011      Revised:  31 July 2011      Accepted manuscript online: 
PACS:  87.85.-d (Biomedical engineering)  
  87.85.Ng (Biological signal processing)  
Fund: Project supported by the Jiangsu Province Science Foundation, China (Grant No. BK2011759).

Cite this article: 

Wang Jun(王俊) and Yu Zheng-Feng(余正锋) Symbolic transfer entropy-based premature signal analysis 2012 Chin. Phys. B 21 018702

[1] Bahraminasab A, Ghasemi F, Stefanovska A, McClintock P V E and Kantz H 2008 Phys. Rev. Lett. 100 084101
[2] Cao Y W, Song S Y and Xiao J H 2010 Acta Phys. Sin. 7 5164 (in Chinese)
[3] Schreiber T 2000 Phys. Rev. Lett. 85 461
[4] Staniek M and Lehnertz K 2008 Phys. Rev. Lett. 100 158101
[5] Zheng W M and Hao B L 1994 Practical Symbolic Dynamics (Shanghai: Shanghai Science and Technology Education Press) p. 26
[6] Liu Y 2006 Symbolic Dynamics Analysis in the EEG Signal Processing Applications (Shantou: Shantou University)
[7] Shreiber T and Schmitz A 1996 Phys. Rev. Lett. 77 635
[8] Shen M F, Liu Y and Lin L X 2009 Chin. Phys. B 18 1761
[9] Song A L, Huang X L, Si J F and Ning X B 2011 Acta Phys. Sin. 60 020509 (in Chinese)
[10] Gao Z Y and Lu Q S 2007 Chin. Phys. 16 2479
[11] Sun L S, Kang X Y and Lin L X 2010 Chin. Phys. B 19 110507
[1] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[2] Applicability of initial optimal maternal and fetal electrocardiogram combination vectors to subsequent recordings
Yan Hua-Wen (闫华文), Huang Xiao-Lin (黄晓林), Zhao Ying (肇莹), Si Jun-Feng (司峻峰), Liu Tie-Bing (刘铁兵), Liu Hong-Xing (刘红星). Chin. Phys. B, 2014, 23(11): 118702.
[3] A progressive processing method for breast cancer detection via UWB based on an MRI-derived model
Xiao Xia (肖夏), Song Hang (宋航), Wang Zong-Jie (王宗杰), Wang Liang (王梁). Chin. Phys. B, 2014, 23(7): 074101.
[4] Cardiac electrical activity imaging of patients with CRBBB or CLBBB in magnetocardiography
Zhu Jun-Jie (朱俊杰), Jiang Shi-Qin (蒋式勤), Wang Wei-Yuan (王伟远), Zhao Chen (赵晨), Wu Yan-Hua (吴燕华), Luo Ming (罗明), Quan Wei-Wei (权薇薇). Chin. Phys. B, 2014, 23(4): 048702.
[5] A new magneto-cardiogram study using a vector model with a virtual heart and the boundary element method
Zhang Chen (张琛), Shou Guo-Fa (寿国法), Lu Hong (陆宏), Hua Ning (华宁), Tang Xue-Zheng (唐雪正), Xia Ling (夏灵), Ma Ping (马平), Tang Fa-Kuan (唐发宽). Chin. Phys. B, 2013, 22(9): 090701.
[6] Magnetic nanoparticle-based cancer nanodiagnostics
Muhammad Zubair Yousaf, Yu Jing (余靓), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2013, 22(5): 058702.
[7] Detrended cross-correlation analysis of electroencephalogram
Wang Jun(王俊) and Zhao Da-Qing(赵大庆) . Chin. Phys. B, 2012, 21(2): 028703.
[8] Cardiac magnetic source imaging based on current multipole model
Tang Fa-Kuan(唐发宽), Wang Qian(王倩), Hua Ning(华宁), Lu Hong(陆宏), Tang Xue-Zheng(唐雪正), and Ma Ping(马平). Chin. Phys. B, 2011, 20(1): 010702.
[9] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
No Suggested Reading articles found!