Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084501    DOI: 10.1088/1674-1056/ab9293

A new car-following model with driver's anticipation effect of traffic interruption probability

Guang-Han Peng(彭光含)
College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China
Abstract  Traffic interruption phenomena frequently occur with the number of vehicles increasing. To investigate the effect of the traffic interruption probability on traffic flow, a new optimal velocity model is constructed by considering the driver anticipation term in the interruption case for car-following theory. Furthermore, the effect of driver anticipation in the interruption case is investigated via linear stability analysis. Also, the MKdV equation is obtained concerning the effect of driver anticipation in the interruption case. Moreover, numerical simulation states that the driver anticipation term in the interruption case contributes to the stability of traffic flow.
Keywords:  traffic flow      interruption probability      optimal velocity model      numerical simulation  
Received:  05 April 2020      Revised:  30 April 2020      Accepted manuscript online: 
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.70.Fh (Phase transitions: general studies)  
  05.70.Jk (Critical point phenomena)  
  89.40.-a (Transportation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61963008 and 61673168), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2018GXNSFAA281274), the Doctor Scientific Research Startup Project Foundation of Guangxi Normal University, China (Grant No. 2018BQ007), and the Innovation-Driven Development Special Fund Project of Guangxi Zhuang Autonomous Region, China (Grant No. GUIKEAA19254034).
Corresponding Authors:  Guang-Han Peng     E-mail:

Cite this article: 

Guang-Han Peng(彭光含) A new car-following model with driver's anticipation effect of traffic interruption probability 2020 Chin. Phys. B 29 084501

[1] Wong S C, Leung B S Y, Loo B P Y, Hung W T and Lo H K 2004 Accid. Anal. Prev. 36 281
[2] Wong S C, Sze N N and Li Y C 2007 Accid. Anal. Prev. 39 1107
[3] Sze N N and Wong S C 2007 Accid. Anal. Prev. 39 1267
[4] Telesca L and Lovallo M 2008 Physica A 387 3299
[5] BaykalG ürsoy M, Xiao W and Ozbay K 2009 Eur. J. Oper. Res. 195 127
[6] Tang T Q, Huang H J and Xu G 2008 Physica A 387 6845
[7] Tian C and Sun D H 2010 Chin. Phys. B 19 120501
[8] Tang T Q, Huang H J, Wong S C and Jiang R 2009 Chin. Phys. B 18 0975
[9] Newell G F 1961 Oper. Res. 9 209
[10] Bando M, Hasebe K, Nakyaama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[11] Hayakawa H and Nakanishi K 1998 Prog. Theor. Phys. Suppl. 130 57
[12] Nagatani T 1999 Phys. Rev. E 60 6395
[13] Nagatani T 2002 Rep. Progr. Phys. 65 1331
[14] Lenz H and Wagner C K 1999 Eur. Phys. J. B 7 331
[15] Hasebe K, Nakayama A and Sugiyama Y 2003 Phys. Rev. E 68 026102
[16] Sawada S 2002 Int. J. Mod. Phys. C 13 1
[17] Wagner C K 1998 Physica A 260 218
[18] Helbing D, Tilch B 1998 Phys. Rev. E 58 133
[19] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[20] Ge H X, Dai S Q, Dong L Y and Xue Y 2004 Phys. Rev. E 70 066134
[21] Ge H X, Dai S Q, Xue Y and Dong L Y 2005 Phys. Rev. E 71 066119
[22] Cheng R J, Ge H X and Wang J F 2017 Phys. Lett. A 381 1302
[23] Song H, Ge H X, Chen F Z and Cheng R J 2017 Nonlinear Dyn. 87 1809
[24] Zhao X M and Gao Z Y 2005 Eur. Phys. J. B 47 145
[25] Sawada S 2006 Int. J. Mod. Phys. C 17 65
[26] Tang T Q, Yi Z Y, Zhang J, Wang T and Leng J Q 2018 Physica A 496 399
[27] Ou H and Tang T Q 2018 Physica A 495 260
[28] Tang T Q, Wang T, Chen L and Huang H J 2018 Physica A 490 451
[29] Zhu W X and Zhang H M 2018 Physica A 496 274
[30] Zhu W X and Zhang L D 2018 Physica A 492 2154
[31] Zhu W X and Yu R L 2012 Commun. Theor. Phys. 57 301
[32] Meng X P, Li Z P and Ge H X 2014 Commun. Theor. Phys. 61 636
[33] Li Z P, Li W Z, Xu S Z and Qian Y Q 2015 Nonlinear Dyn. 80 529
[34] Li Z P, Zhang R, Xu S Z and Qian Y Q 2015 Commun. Nonlinear Sci. Numer. Simul. 24 52
[35] Ngoduy D 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2699
[36] Ngoduy D 2014 Nonlinear Dyn. 77 289
[37] Ngoduy D 2009 Phys. Scr. 80 025802
[38] Ngoduy D 2014 Comput. Aided Civ. Inf. Eng. 29 248
[39] Redhu P and Gupta A K 2014 Nonlinear Dyn. 78 957
[40] Gupta A K and Redhu P 2014 Nonlinear Dyn. 76 1001
[41] Redhu P and Gupta A K 2015 Physica A 421 249
[42] Gupta A K and Redhu P 2013 Phys. Lett. A 377 2027
[43] Redhu P and Gupta A K 2016 Physica A 445 150
[44] Gupta A K and Redhu P 2013 Physica A 392 5622
[45] Sharma S 2015 Physica A 421 401
[46] Sharma S 2015 Nonlinear Dyn. 81 991
[47] Gupta A K and Redhu P 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1600
[48] Zhang G, Sun D H, Liu H and Chen D 2017 Physica A 486 806
[49] Yu S W, Fu R, GuoY S, Xin Q and Shi Z K 2019 Physica A 531 121789
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[4] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[5] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[6] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[7] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[8] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[9] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[10] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[11] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[12] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[13] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[14] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[15] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
No Suggested Reading articles found!