Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017802    DOI: 10.1088/1674-1056/21/1/017802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The dielectric behaviour of doped near-stoichiometric lithium niobate in the terahertz range

Wu Liang(吴亮)a), Ling Fu-Ri(凌福日)a)† , Zuo Zhi-Gao(左志高)a), Liu Jin-Song(刘劲松)a), and Yao Jian-Quan(姚建铨)a)b)
a Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; b College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
Abstract  The dielectric properties of near-stoichiometric LiNbO3:Fe and LiNbO3:Ce single crystals have been investigated using terahertz time domain spectroscopy in a frequency range of 0.7-1.6 THz at room temperature. When coupled with an applied external optical field, obvious photorefractive effects were observed, resulting in a modulation of the complex dielectric constant for the crystals. The variation in refractive index, |Δn|, had a linear relationship with the applied light intensity, accompanied by a step-like decrease at high intensity. The findings were attributed to the internal space charge field of the photorefraction and the light-induced domain reversal in the crystals.
Keywords:  near-stoichiometric LiNbO3      terahertz      photorefraction      domain reversal  
Received:  30 June 2011      Revised:  04 September 2011      Accepted manuscript online: 
PACS:  78.20.Mg (Photorefractive effects)  
  42.70.Mp (Nonlinear optical crystals)  
  87.50.U-  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974063), the Research Foundation ofWuhan National Laboratory, China (Grant No. P080008), and the National Basic Research Program of China (Grant No. 2007CB310403).

Cite this article: 

Wu Liang(吴亮), Ling Fu-Ri(凌福日), Zuo Zhi-Gao(左志高), Liu Jin-Song(刘劲松), and Yao Jian-Quan(姚建铨) The dielectric behaviour of doped near-stoichiometric lithium niobate in the terahertz range 2012 Chin. Phys. B 21 017802

[1] Gunter P and Huignard P J 1988 1989 Photorefractive Materials and Their Applications I and II (Eidelberg: Springer-Verlag)
[2] Banfi G P, Datta P K, Degiorgio V and Fortusini D 1998 Appl. Phys. Lett. 73 136
[3] Berm'udez V, Capmany J, GarcíaSolÉ J and DiÉguez E 1998 Appl. Phys. Lett. 73 593
[4] Pruneri V, Webjörn J, Russell P St J and Hanna D C 1995 Appl. Phys. Lett. 67 2126
[5] Sasaki Y, Yuri A, Kawase K and Ito H 2002 Appl. Phys. Lett. 81 3323
[6] Abernethy J A, Gawith C B E, Eason R W and Smith P G R 2002 Appl. Phys. Lett. 81 2514
[7] Gallo K and Assanto G 2001 Appl. Phys. Lett. 79 314
[8] Zhang Y 2010 Acta Phys. Sin. 59 5528 (in Chinese)
[9] Kahmann F, Pankrath R and Rupp R A 1994 Opt. Commun. 107 6
[10] Wang W J, Kong Y F, Liu H D, Hu Q, Liu S G, Chen S L and Xu J J 2009 J. Appl. Phys. 105 043105
[11] Ling F R, Wang B, Guan C X, Tao G, Teng D D, Yuan W and Sun N 2004 Opt. Commun. 241 293
[12] Wu L, Ling F R, Tian X G, Zhao H T, Liu J S and Yao J Q 2011 Opt. Mater. 33 1737
[13] Jermann F and Otten J 1993 J. Opt. Soc. Am. B 10 2085
[14] Volk T and Wöhlecke M 2008 Lithium Niobate-Defects, Photorefraction and Ferroelectric (Berlin: Springer)
[15] Nahata A, Weling A S and Heinz T F 1996 Appl. Phys. Lett. 69 2321
[16] Wu L, Ling F R, Liu T, Liu J S, Xu Y B and Yao J Q 2011 Opt. Express 19 5118
[17] Zhong K, Yao J Q, Xu D G, Zhang H Y and Wang P 2011 Acta Phy. Sin. 60 285 (in Chinese)
[18] Chen Y C, Wu L, Chou Y P and Tsai Y T 2000 Mater. Sci. Eng. B 76 95
[19] Johnson K M 1962 J. Appl. Phys. 33 2826
[20] Chen F S 1969 J. Appl. Phys. 40 3389
[21] Vitova T, Hormes J, Falk Matthias and Karsten B 2009 J. Appl. Phys. 105 013524
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!