Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017101    DOI: 10.1088/1674-1056/21/1/017101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Density-functional theory investigation of energy gaps and optical properties of Hg1-xCdxTe and In1-xGaxAs

Guo San-Dong(郭三栋) and Liu Bang-Gui(刘邦贵)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We use a modified Becke-Johnson exchange plus a local density approximation correlation potential within the density functional theory to investigate the electronic structures of Hg1-xCdxTe and In1-xGaxAs with x being 0, 0.25, 0.5, 0.75, and 1. For both of the two series, our calculated energy gaps and dielectric functions (real part ε1 and imaginary part ε2) are in agreement with the corresponding experimental results with x being between 0 and 1. The calculated zero-frequency refractive index varies greatly with x for Hg1-xCdxTe, but changes little with x for In1-xGaxAs, which is consistent with the real parts of their dielectric functions. Therefore, this new approach is satisfactory to describe the electronic structures and the optical properties of the semiconductors.
Keywords:  semiconductor      gap      optical property  
Received:  01 July 2011      Revised:  01 September 2011      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  71.55.-i (Impurity and defect levels)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174359, 10874232, and 10774180) and the National Basic Research Program of China (Grant No. 2012CB932302).

Cite this article: 

Guo San-Dong(郭三栋) and Liu Bang-Gui(刘邦贵) Density-functional theory investigation of energy gaps and optical properties of Hg1-xCdxTe and In1-xGaxAs 2012 Chin. Phys. B 21 017101

[1] Rogalski A 2005 Rep. Prog. Phys. 68 2267
[2] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[3] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[4] König M, Buhmann H, Molenkamp L W, Hughes T L, Liu C X, Qi X L and Zhang S C 2008 it J. Phys. Soc. Jpn. 77 031007
[5] Morkoc H and Unlu H 1987 Semiconductors and Semimetals 24 135
[6] Tsang W T 1987 Semiconductors and Semimetals 24 397
[7] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[8] Al-Sawai W, Lin H, Markiewicz R S, Wray L A, Xia Y, Xu S Y, Hasan M Z and Bansil A 2010 Phys. Rev. B 82 125208
[9] Guo S D and Liu B G 2011 Europhys. Lett. 93 47006
[10] Gong S and Liu B G 2011 Phys. Lett. A 375 1477
[11] Singh D J 2010 Phys. Rev. B 82 155145
[12] Singh D J, Seo S S A and Lee H N 2010 Phys. Rev. B 82 180103(R)
[13] Kim Y S, Marsman M, Kresse G, Tran F and Blaha P 2010 Phys. Rev. B 82 205212
[14] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[15] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[16] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, an Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz Technische Universität Wien, Austria) ISBN 3-9501031-1-2
[17] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] MacDonald A H, Pickett W E and Koelling D D 1980 J. Phys. C 13 2675
[20] Singh D J and Nordstrom L 2006 Plane Waves, Pseudopotentials and the LAPW Method (2nd Edn.) (New York: Springer)
[21] Kunes J, Novak P, Schmid R, Blaha P and Schwarz K 2001 Phys. Rev. B 64 153102
[22] Wang G, Wu S, Geng Z H, Wang S Y, Chen L Y and Jia Y 2010 J. Kor. Phys. Soc. 56 1307
[23] Hansen G L, Schmit J L and Casselman T N 1982 J. Appl. Phys. 53 7099
[24] Nahory R E, Pollack M A, Johnston W D Jr and Barns R L 1978 Appl. Phys. Lett. 33 659
[25] Vi na L, Umbach C, Cardona M and Vodopyanov L 1984 Phys. Rev. B 29 6752
[26] Kim T J, Ghong T H, Kim Y D, Kim S J, Aspnes D E, Mori T, Yao T and Koo B H 2003 Phys. Rev. B 68 115323
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[5] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[9] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[10] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[11] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[14] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[15] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
No Suggested Reading articles found!