Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017102    DOI: 10.1088/1674-1056/21/1/017102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure of PCBM

Sheng Chun-Qi(盛春荠)a)b), Wang Peng(王鹏)a), Shen Ying(沈影)a), Li Yan-Jun(李艳君)a), Zhang Wen-Hua(张文华)c), Xu Fa-Qiang(徐法强)c), Zhu Jun-Fa(朱俊发)c), Lai Guo-Qiao(来国桥)b), and Li Hong-Nian(李宏年)a)
a Department of Physics, Zhejiang University, Hangzhou 310027, China; b Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University§Hangzhou 310012, China; c National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Abstract  We have studied the electronic structure of [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) using synchrotron radiation photoelectron spectroscopy (PES) measurements and first-principles calculations. The PES spectrum of the entire occupied valence band is reported, which exhibits abundant spectral features from the Fermi level to ~24 eV binding energy. All the spectral features are broadened as compared with the cases of C60. The reasons for the broadening are analysed by comparing the experimental data with the calculated energy levels and density of states. Special attention is paid to the analysis of the C60 highest occupied molecular orbital (HOMO)-1 derived states, which can play a crucial role in the bonding at the interfaces of PCBM/polymer blenders or PCBM/electrodes. Besides the well-known energy level splitting of the C60 backbone caused by the lowered symmetry, C 2p states from the side chain mix or hybridize with the molecular orbitals of parent C60. The contribution of the O 2p states can substantially modify the PES spectrum.
Keywords:  [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM)      electronic structure      photoelectron spectroscopy      density functional theory  
Received:  20 July 2011      Revised:  05 September 2011      Accepted manuscript online: 
PACS:  71.20.Tx (Fullerenes and related materials; intercalation compounds)  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11079028) and the National Synchrotron Radiation Laboratory of China.

Cite this article: 

Sheng Chun-Qi(盛春荠), Wang Peng(王鹏), Shen Ying(沈影), Li Yan-Jun(李艳君), Zhang Wen-Hua(张文华), Xu Fa-Qiang(徐法强), Zhu Jun-Fa(朱俊发), Lai Guo-Qiao(来国桥), and Li Hong-Nian(李宏年) Electronic structure of PCBM 2012 Chin. Phys. B 21 017102

[1] Akaike K, Kanai K, Yoshida H, Tsutsumi J, Nishi T, Sato N, Ouchi Y and Seki K 2008 J. Appl. Phys. 104 023710
[2] Nápoles-Duarte J M, Reyes-Reyes M, Ricardo-Chavez J L, Garibay-Alonso R and López-Sandoval R 2008 Phys. Rev. B 78 035425
[3] Morvillo P and Bobeico E 2008 Sol. Energy Mater. Sol. Cells 92 1192
[4] Zhang C R, Chen H S, Chen Y H, Wei Z Q and Pu Z S 2008 Acta Phys. Chim. Sin. 24 353
[5] Zhang Z, Han P, Liu X, Zhao J, Jia H, Zeng F and Xu B 2008 J. Phys. Chem. C 112 19158
[6] Bazylewski P F, Kim K H, Forrest J L, Tada H, Choi D H and Chang G S 2011 Chem. Phys. Lett. 508 90
[7] Schwenn P E, Burn P L and Powell B J 2011 Org. Electron. 12 394
[8] Kanai K, Akaike K, Koyasu K, Sakai K, Nishi T, Kamizuru Y, Nishi T, Ouchi Y and Seki K 2009 Appl. Phys. A 95 309
[9] Akaike K, Kanai K, Ouchi Y and Seki K 2009 Appl. Phys. Lett. 94 043309
[10] Akaike K, Kanai K, Ouchi Y and Seki K 2009 Appl. Phys. Lett. 95 113306
[11] Cho S, Seo J H, Lee K and Heeger A J 2009 Adv. Func. Mat. 19 1459
[12] Xu Z, Chen L M, Chen M H, Li G and Yang Y 2009 Appl. Phys. Lett. 95 013301
[13] Guan Z L, Kim J B, Wang H, Jaye C, Fischer D A, Loo Y L and Kahn A 2010 Org. Electron. 11 1779
[14] Tsoi W C, Spencer S J, Yang L, Ballantyne A M, Nicholson P G, Turnbull A, Shard A G, Murphy C E, Bradley D D C, Nelson J and Kim J S 2011 Macromolecules 44 2944
[15] Vaynzof Y, Kabra D, Zhao L, Chua L L, Steiner U and Friend R H 2011 ACS Nano 5 329
[16] Delley B 1990 J. Chem. Phys. 92 508
[17] Delley B 2000 J. Chem. Phys. 113 7756
[18] Becke A D 1988 J. Chem. Phys. 88 1053
[19] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[20] Wang X X, Xu Y B, Li H N, Zhang W H and Xu F Q 2008 J. Electron Spectrosc. Relat. Phenom. 165 20
[21] Li H N, Yang H, Wang X X, Ni J F, Wang P, Meng L, Wang X B, Kurash I, Qian H J, Wang J O and Liu Z Y 2009 J. Phys.: Condens. Matter 21 265502
[22] Li Y J, Wang P, Ni J F, Meng L, Wang X B, Sheng C Q, Li H N, Zhang W H, Xu Y, Xu F Q and Zhu J F 2011 J. Electron Spectrosc. Relat. Phenom. 184 414
[23] Yeh J J and Lindau I 1985 Atomic Subshell Photoionization Cross Section and Asymmetry Parameters: 1 le Z le 103 (New York: Academic) pp. 7-11
[24] Satpathy S, Antropov V P, Andersen O K, Jepsen O, Gunnarsson O and Liechtenstein A I 1992 Phys. Rev. B 46 1773
[25] Li H N, Wang X X, He S L, Ibrahim K, Qian H J, Su R, Zhong J, Abbas M I and Hong C H 2005 Surf. Sci. 586 65
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[14] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[15] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
No Suggested Reading articles found!