CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Water adsorption on the Be(0001) surface: from monomer to trimer adsorption |
Ning Hua(宁华), Tao Xiang-Ming(陶向明), and Tan Ming-Qiu(谭明秋)† |
Department of Physics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract In this paper, the density functional theory has been used to perform a comparative theoretical study of water monomer, dimer, trimer, and bilayer adsorptions on the Be(0001) surface. In our calculations, the adsorbed water molecules are energetically favoured adsorbed on the atop sites, and the dimer adsorption is found to be the most stable with a peak adsorption energy of ~437 meV. Further analyses have revealed that the essential bonding interaction between the water monomer and the metal substrate is the hybridization of the water 3a1-like molecular orbital with the (s, pz) orbitals of the surface beryllium atoms. While in the case of the water dimer adsorption, the 1b1-like orbital of the H2O molecule plays a dominant role.
|
Received: 20 March 2011
Revised: 04 July 2011
Accepted manuscript online:
|
PACS:
|
68.43.Bc
|
(Ab initio calculations of adsorbate structure and reactions)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
82.45.Jn
|
(Surface structure, reactivity and catalysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074217). |
Cite this article:
Ning Hua(宁华), Tao Xiang-Ming(陶向明), and Tan Ming-Qiu(谭明秋) Water adsorption on the Be(0001) surface: from monomer to trimer adsorption 2012 Chin. Phys. B 21 016802
|
[1] |
Morgenstern K and Nieminen J 2002 Phys. Rev. Lett. 88 066102
|
[2] |
Morgenstern K and Rieder K H 2002 J. Chem. Phys. 116 5746
|
[3] |
Mitsui T, Rose M K, Fomin E, Ogletree D F and Salmeron M 2002 Science 297 1850
|
[4] |
Anderson S, Nyberg C and Tengstaal C G 1984 Chem. Phys. Lett. 104 305
|
[5] |
Nyberg C, Tengstaal C G, Uvdal P and Anderson S 1986 J. Electron Spectrosc. Relat. Phenom. 38 299
|
[6] |
Nyberg C and Tengstaal C G 1984 J. Chem. Phys. 80 3463
|
[7] |
Stuve E M, Jorgensen S W and Madix R J 1984 Surf. Sci. 146 179
|
[8] |
Lloyd K G, Banse B A and Hemminger J C 1986 Phys. Rev. B 33 2858
|
[9] |
Brosseau R, Ellis T H and Morin M 1990 J. Vac. Sci. Technol. A 8 2454
|
[10] |
Thiel P A and Madey T E 1987 Surf. Sci. Rep. 7 211
|
[11] |
Henderson M A 2002 Surf. Sci. Rep. 46 5
|
[12] |
Michaelides A, Alavi A and King D A 2003 J. Am. Chem. Soc. 125 2746
|
[13] |
Michaelides A, Ranea V A, de Andres P L and King D A 2003 Phys. Rev. Lett. 90 216102
|
[14] |
Meng S, Wang E G and Gao S W 2004 Phys. Rev. B 69 195404
|
[15] |
Ranea V A, Michaelides A, Ramírez R, VergÉs J A, de Andres P L and King D A 2004 Phys. Rev. B 69 205411
|
[16] |
Sebastiani D and Site L D 2005 J. Chem. Theory Comput. 1 78
|
[17] |
Wang S W, Cao Y Z and Rikvold P A 2004 Phys. Rev. B 70 205410
|
[18] |
Abramov E, Riehm M P, Thompson D A and Smelter W W 1990 J. Nucl. Mater. 175 90
|
[19] |
Dietz K J and the JET Team 1990 Plasma Phys. Contr. F. 32 837
|
[20] |
Kresse G and Furthmüller 1996 J. Comput. Mater. Sci. 6 15
|
[21] |
Kresse G and Furthmüller 1996 Phys. Rev. B 54 11169
|
[22] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[23] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[24] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[25] |
Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
|
[26] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[27] |
Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067
|
[28] |
Bengtsson L 1999 Phys. Rev. B 59 12301
|
[29] |
Hector L G, Herbst J F, Wolf W, Saxe P and Kresse G 2007 Phys. Rev. B 76 014121
|
[30] |
Holzwarth N A W and Zeng Y 1995 Phys. Rev. B 51 13653
|
[31] |
Davis H L, Hannon J B, Ray K B and Plummer E W 1992 Phys. Rev. Lett. 68 2632
|
[32] |
Feibelman P J 1992 Phys. Rev. B 46 2532
|
[33] |
Stumpf R and Feibelman P J 1995 Phys. Rev. B 51 13748
|
[34] |
Antonelli A, Khanana S N and Jena P 1993 Surf. Sci. 289 L614
|
[35] |
Pohl K, Cho J H, Terakura K, Scheffler M and Plummer E W 1998 Phys. Rev. Lett. 80 2853
|
[36] |
Sim F, Amant A S, Papai I and Salahub D R 1992 J. Am. Chem. Soc. 114 4391
|
[37] |
Barnett R N and Landman U 1993 Phys. Rev. B 48 2081
|
[38] |
Li J B, Zhu S L, Li Y and Wang F H 2007 Phys. Rev. B 76 235433
|
[39] |
Doering D L and Madey T E 1982 Surf. Sci. 123 305
|
[40] |
Michaelides A 2006 Appl. Phys. A 85 415
|
[41] |
Carrasco J, Michaelides A and Scheffler M 2009 J. Chem. Phys. 130 184707
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|