Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 016802    DOI: 10.1088/1674-1056/21/1/016802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Water adsorption on the Be(0001) surface: from monomer to trimer adsorption

Ning Hua(宁华), Tao Xiang-Ming(陶向明), and Tan Ming-Qiu(谭明秋)
Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  In this paper, the density functional theory has been used to perform a comparative theoretical study of water monomer, dimer, trimer, and bilayer adsorptions on the Be(0001) surface. In our calculations, the adsorbed water molecules are energetically favoured adsorbed on the atop sites, and the dimer adsorption is found to be the most stable with a peak adsorption energy of ~437 meV. Further analyses have revealed that the essential bonding interaction between the water monomer and the metal substrate is the hybridization of the water 3a1-like molecular orbital with the (s, pz) orbitals of the surface beryllium atoms. While in the case of the water dimer adsorption, the 1b1-like orbital of the H2O molecule plays a dominant role.
Keywords:  Be(0001)/H2O surface      adsorption energy      electronic structure  
Received:  20 March 2011      Revised:  04 July 2011      Accepted manuscript online: 
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074217).

Cite this article: 

Ning Hua(宁华), Tao Xiang-Ming(陶向明), and Tan Ming-Qiu(谭明秋) Water adsorption on the Be(0001) surface: from monomer to trimer adsorption 2012 Chin. Phys. B 21 016802

[1] Morgenstern K and Nieminen J 2002 Phys. Rev. Lett. 88 066102
[2] Morgenstern K and Rieder K H 2002 J. Chem. Phys. 116 5746
[3] Mitsui T, Rose M K, Fomin E, Ogletree D F and Salmeron M 2002 Science 297 1850
[4] Anderson S, Nyberg C and Tengstaal C G 1984 Chem. Phys. Lett. 104 305
[5] Nyberg C, Tengstaal C G, Uvdal P and Anderson S 1986 J. Electron Spectrosc. Relat. Phenom. 38 299
[6] Nyberg C and Tengstaal C G 1984 J. Chem. Phys. 80 3463
[7] Stuve E M, Jorgensen S W and Madix R J 1984 Surf. Sci. 146 179
[8] Lloyd K G, Banse B A and Hemminger J C 1986 Phys. Rev. B 33 2858
[9] Brosseau R, Ellis T H and Morin M 1990 J. Vac. Sci. Technol. A 8 2454
[10] Thiel P A and Madey T E 1987 Surf. Sci. Rep. 7 211
[11] Henderson M A 2002 Surf. Sci. Rep. 46 5
[12] Michaelides A, Alavi A and King D A 2003 J. Am. Chem. Soc. 125 2746
[13] Michaelides A, Ranea V A, de Andres P L and King D A 2003 Phys. Rev. Lett. 90 216102
[14] Meng S, Wang E G and Gao S W 2004 Phys. Rev. B 69 195404
[15] Ranea V A, Michaelides A, Ramírez R, VergÉs J A, de Andres P L and King D A 2004 Phys. Rev. B 69 205411
[16] Sebastiani D and Site L D 2005 J. Chem. Theory Comput. 1 78
[17] Wang S W, Cao Y Z and Rikvold P A 2004 Phys. Rev. B 70 205410
[18] Abramov E, Riehm M P, Thompson D A and Smelter W W 1990 J. Nucl. Mater. 175 90
[19] Dietz K J and the JET Team 1990 Plasma Phys. Contr. F. 32 837
[20] Kresse G and Furthmüller 1996 J. Comput. Mater. Sci. 6 15
[21] Kresse G and Furthmüller 1996 Phys. Rev. B 54 11169
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[23] Blöchl P E 1994 Phys. Rev. B 50 17953
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067
[28] Bengtsson L 1999 Phys. Rev. B 59 12301
[29] Hector L G, Herbst J F, Wolf W, Saxe P and Kresse G 2007 Phys. Rev. B 76 014121
[30] Holzwarth N A W and Zeng Y 1995 Phys. Rev. B 51 13653
[31] Davis H L, Hannon J B, Ray K B and Plummer E W 1992 Phys. Rev. Lett. 68 2632
[32] Feibelman P J 1992 Phys. Rev. B 46 2532
[33] Stumpf R and Feibelman P J 1995 Phys. Rev. B 51 13748
[34] Antonelli A, Khanana S N and Jena P 1993 Surf. Sci. 289 L614
[35] Pohl K, Cho J H, Terakura K, Scheffler M and Plummer E W 1998 Phys. Rev. Lett. 80 2853
[36] Sim F, Amant A S, Papai I and Salahub D R 1992 J. Am. Chem. Soc. 114 4391
[37] Barnett R N and Landman U 1993 Phys. Rev. B 48 2081
[38] Li J B, Zhu S L, Li Y and Wang F H 2007 Phys. Rev. B 76 235433
[39] Doering D L and Madey T E 1982 Surf. Sci. 123 305
[40] Michaelides A 2006 Appl. Phys. A 85 415
[41] Carrasco J, Michaelides A and Scheffler M 2009 J. Chem. Phys. 130 184707
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!