Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 014212    DOI: 10.1088/1674-1056/21/1/014212
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Electromagnetic scattering of the carbon nanotubes excited by an electric line source

Wang Yue(王玥)a)b)c), Wu Qun(吴群)b)c)†, Wu Yu-Ming(吴昱明)d), He Xun-Jun(贺训军)a), and Li Le-Wei(李乐伟)e)
a Department of Electrical Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; b School of Electronics and Information Technology, Harbin Institute of Technology, Harbin 150001, China; c State Key Laboratory of Millimeter Wave, Southeast University, Nanjing 210096, China; d School of Electrical & Electronic Engineering, Nanyang Technological University, 639798, Singaporee Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260, Singapore
Abstract  An analytical solution is presented for the electromagnetic scattering from an infinite-length metallic carbon nanotube and a carbon nanotube bundle. The scattering field and scattering cross section are predicted using a modal technique based on a Bessel and Hankel function for the electric line source and a quantum conductance function for the carbon nanotube. For the particular case of an isolated armchair (10, 10) carbon nanotube, the scattered field predicted from this technique is in excellent agreement with the measured result. Furthermore, the analysis indicates that the scattering pattern of an isolated carbon nanotube differs from that of the carbon nanotube bundle of identical index (m, n) metallic carbon nanotubes.
Keywords:  scattering      carbon nanotubes      terahertz  
Received:  20 May 2011      Revised:  22 July 2011      Accepted manuscript online: 
PACS:  42.68.Mj (Scattering, polarization)  
  78.30.Na (Fullerenes and related materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60871073, 60971064, and 51005001), the Open Program of the State Key Laboratory of Millimeter Wave of China (Grant No. K201006), the Special Funds for the Technological and

Cite this article: 

Wang Yue(王玥), Wu Qun(吴群), Wu Yu-Ming(吴昱明), He Xun-Jun(贺训军), and Li Le-Wei(李乐伟) Electromagnetic scattering of the carbon nanotubes excited by an electric line source 2012 Chin. Phys. B 21 014212

[1] Odom T W, Huang J L, Kim P and Lieber C M 1998 Nature 391 62
[2] Yang J, Dong Q L, Jiang Z T and Zhang J 2010 Chin. Phys. B 19 127104
[3] Miao T T, Song M X, Ma W G and Zhang X 2011 Chin. Phys. B 20 056501
[4] Slepyan G Y, Maksimenko S A, Lakhtakia A, Yevtushenko O M and Gusakov A V 1999 Phys.Rev. B 60 17136
[5] Slepyan G Y, Shuba M V, Maksimenko S A and Lakhtakia A 2006 Phys. Rev. B 73 195416
[6] Ioannidi C C and Anastassiu H T 2009 IEEE Trans. Mag. 45 1308
[7] Moradi A 2010 Phys. Plasm. 17 033504
[8] Ngoly A and Mcfee S 2008 IEEE Trans. Mag. 44 750
[9] Nicomedes W L, Mesquita R C and Moreira F J 2010 IEEE Trans. Mag. 46 2783
[10] Sfeir M Y, Beetz T, Wang F, Huang L, Huang X M and Huang M 2006 Science 312 554
[11] Sfeir M Y, Wang F, Huang L, Chuang C, Hone J, Brus L E and Heinz T 2004 Science 306 1540
[12] Balanis C A 1989 Advanced Engineering Electromagnetics (New York: Wiley) p. 626
[13] Shuba M V, Maksimenko S A and Lakhtakia A 2007 Phys. Rev. B 76 155407
[14] Mintmire J W and White C T 1998 Phys. Rev. Lett. 81 2506
[15] Hao J and Hanson G W 2006 IEEE Trans. Nanotech. 5 766
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[7] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[8] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[9] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[10] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[11] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[12] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[13] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[14] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[15] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
No Suggested Reading articles found!