Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097101    DOI: 10.1088/1674-1056/20/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Detecting magnetic field direction by a micro beam operating in different vibration modes

Chen Jie(陈洁), Qin Ming(秦明), and Huang Qing-An(黄庆安)
Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
Abstract  A new method to detect the magnetic field direction by using a silicon structure is presented in this paper. The structure includes a micro beam and an in-plane coil electrode. When the electrode under a magnetic field is applied with an alternating current, the micro beam is actuated under the effect of the Lorentz forces. Magnetic fields of different directions cause different vibration profiles. The direction of the magnetic field is obtained by measuring the vibration amplitudes of the micro beam, which is driven to work at first- and second-order resonant modes. A micro structure has been fabricated using the bulk micromachined silicon process. A laser Doppler vibrometer system is implemented to measure the vibration amplitudes. The experimental results show that the amplitude of the structure, which depends on the different modes, is a sine or cosine function of the angle of the magnetic field. It agrees well with the simulation result. Currently a resolution of 10° for the magnetic field direction measurement can be obtained using the detecting principle.
Keywords:  beam      micro-electro-mechanical systems      Lorentz force      resonance  
Received:  11 April 2011      Revised:  11 May 2011      Accepted manuscript online: 
PACS:  71.10.-w (Theories and models of many-electron systems)  
  71.45.-d (Collective effects)  

Cite this article: 

Chen Jie(陈洁), Qin Ming(秦明), and Huang Qing-An(黄庆安) Detecting magnetic field direction by a micro beam operating in different vibration modes 2011 Chin. Phys. B 20 097101

[1] Lenz J E 1990 Proc. IEEE 78 973
[2] Yang G, Tu B H, Li G H, Zhao H W and Zhou S P 2008 Chin. Phys. B 17 1674
[3] Fang Y M, Huang Q A and Li W H 2008 Chin. Phys. B 17 1715
[4] Baglio S, Latorre L and Nouet P 1999 Proceedings of the 16th IEEE of Instrumentation and Measurement Technology Conference, May 24—26, 1999 Venice, Italy, p. 452
[5] Beroulle V, Bertrand Y, Latorre L and Noue P 2003 Sens. Actuators A 103 23
[6] Dumas N, Azais F, Latorre L and Nouet P 2005 Proceedings of the 23rd IEEE VLSI Test Symposium, May 1—5, 2005 Palm Springs, USA, p. 213
[7] Sunier R, Vancura T, Li Y, Kirstein K and Baltes H 2006 J. Microelectromech. Syst. 15 1098
[8] Eyre B, Pister K S J and Kaiser W 1998 IEEE Electron Device Lett. 19 496
[9] Brugger S, Simon P and Paul O 2006 Proceedings of the 5th IEEE Conference on Sensors, October 22—25, 2006 Daegu, Korea, p. 1016
[10] Brugger S and Paul O 2008 Proceedings of the IEEE 21st Annual International Conference on Micro Electro Mechanical Systems, January 13—17, 2008 Tucson, USA, p. 944
[11] Brugger S and Paul O 2009 J. Microelectromech. Syst. 18 1432
[12] Leichle T C ,Ye W and Allen M G 2003 Proceedings of the IEEE 16th Annual International Conference on Micro Electro Mechanical Systems, January 19—23 , 2003 Kyoto, Japan, p. 514
[13] Leichle T C, Arx M V, Reiman S, Zana I, Ye W and Allen M G 2004 J. Micromech. Microeng. 14 462
[14] Choi S, Kim S H, Yoon Y K and Allen M G 2006 IEEE Trans. Mag. Conf. 42 3506
[15] Chen J, Huang Q A and Qin M 2009 Proceedings of the 8th IEEE Conference on Sensors, October 25—28, 2009 Christchurch, New Zealand, p. 1246
[16] Chen J, Qin M and Huang Q A 2011 Proceedings of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems, June 5—9, 2011 Beijing, China, p. 1108
[17] Zhao J P, Chen H L, Huang J M and Liu A Q 2005 Sens. Actuators A 120 199
[18] Kadar Z, Kindt W, Bossche A and Mollinger J 1996 Sens. Actuators A 53 299
[19] Bao M H and Yang H 2007 Sens. Actuators A 136 3
[20] Ozdoganlar O B, Hansche B D and Carne T G 2005 Exp. Mech. 45 498
[21] Song J, Huang Q A, Li M and Tang J Y 2009 J. Microelectromech. Syst. 18 274
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[4] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[5] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[6] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[7] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[8] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[9] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[10] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[11] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[12] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[13] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[14] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[15] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
No Suggested Reading articles found!