CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Influence of Boron doping on microcrystalline silicon growth |
Li Xin-Li(李新利)a), Chen Yong-Sheng(陈永生)a), Yang Shi-E(杨仕娥) a), Gu Jin-Hua(谷锦华) a), Lu Jing-Xiao(卢景霄)a)† , Gao Xiao-Yong(郜小勇)a), Li Rui(李瑞)a)b),Jiao Yue-Chao(焦岳超)a), Gao Hai-Bo(高海波)a), and Wang Guo(王果)a) |
a The Key Laboratory of Material Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China; b Henan University of Technology, Zhengzhou 450051, China |
|
|
Abstract Microcrystalline silicon (μc-Si:H) thin films with and without boron doping are deposited using the radio-frequency plasma-enhanced chemical vapour deposition method. The surface roughness evolutions of the silicon thin films are investigated using ex situ spectroscopic ellipsometry and an atomic force microscope. It is shown that the growth exponent β and the roughness exponent α are about 0.369 and 0.95 for the undoped thin film, respectively. Whereas, for the boron-doped μc-Si:H thin film, β increases to 0.534 and $\alpha$ decreases to 0.46 due to the shadowing effect.
|
Received: 28 December 2010
Revised: 18 May 2011
Accepted manuscript online:
|
PACS:
|
68.55.ag
|
(Semiconductors)
|
|
68.55.jm
|
(Texture)
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2011CB201606) and the National Natural Science Foundation of China (Grant No. 51007082). |
Cite this article:
Li Xin-Li(李新利), Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Gu Jin-Hua(谷锦华), Lu Jing-Xiao(卢景霄), Gao Xiao-Yong(郜小勇), Li Rui(李瑞), Jiao Yue-Chao(焦岳超), Gao Hai-Bo(高海波), and Wang Guo(王果) Influence of Boron doping on microcrystalline silicon growth 2011 Chin. Phys. B 20 096801
|
[1] |
Li T W, Liu F C and Zhu M F 2011 Acta Phys. Sin. 60 18103 (in Chinese)
|
[2] |
Chen Y S, Xu Y H, Gu J H, Lu J X, Yang S E and Gao X Y 2010 Chin. Phys. B 19 087206
|
[3] |
Chen Y S, Yang S E, Wang J H, Lu J X, Gao X Y and Gu J H 2010 Chin. Phys. B 19 057205
|
[4] |
Yang S E, Wen L W, Chen Y S, Wang C Z, Gu J H, Gao X Y and Lu J X 2008 Acta Phys. Sin. 57 5176 (in Chinese)
|
[5] |
Liu M X, Li B C, Gao W D and Han Y L 2010 Acta Phys. Sin. 59 1632 (in Chinese)
|
[6] |
Zhang J T, Li Y and Luo Z Y 2010 Acta Phys. Sin. 59 0186 (in Chinese)
|
[7] |
Zhou Y, Wu G S, Dai W, Li H W and Wang A Y 2010 Acta Phys. Sin. 59 2356 (in Chinese)
|
[8] |
Gao X Y, Feng H L, Ma J M and Zhang Z Y 2010 Chin. Phys. B 19 090701
|
[9] |
Kumar S, Pandya D K and Chopra K L 1988 J. Appl. Phys. 63 1497
|
[10] |
Koh J, Fujiwara H, Koval R J, Wronski C R and Collins R W 1999 J. Appl. Phys. 85 4141
|
[11] |
Gu J H, Ding Y L, Yang S E, Gao X Y, Chen Y S and Lu J X 2009 Acta Phys. Sin. 58 4123 (in Chinese)
|
[12] |
Hadjaj A, Pham N, Cabarrocas P R I and Jbara O 2009 Appl. Phys. Lett. 94 061909
|
[13] |
Chen Y S, Yang S E, Wang J H, Lu J X, Gao X Y, Gu J H, Zheng W and Zhao S L 2008 Chin. Phys. B 17 1394
|
[14] |
Sanjay K R, Satyendra K, Dinesh D and Cabarrocas P R I 2007 Thin Solid Films 515 7619
|
[15] |
Jia H J and Shirai H 2006 Thin Solid Films 506—507 27
|
[16] |
Kumar S, Drevillon B and Godet C 1986 J. Appl. Phys. 60 1542
|
[17] |
Hadjadj A, Pham N, Roca I, Cabarrocas P, Jbara O and Djellouli G 2010 J. Appl. Phys. 107 083509
|
[18] |
Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett. 56 889
|
[19] |
Qi H J, Huang L H, Shao J D and Fan Z X 2003 Acta Phys. Sin. 52 2743 (in Chinese)
|
[20] |
Zhu Z L, Ding Y L, Wang Z Y, Gu J H and Lu J X 2010 Chin. Phys. B 19 106803
|
[21] |
Fujiwara H, Kondo M and Mastuda A 2001 Phys. Rev. B 63 115306
|
[22] |
Kondo M, Ohe T, Saito K, Nishimiya T and Mstsuda A 1998 J. Non-Cryst. Solids 227—230 890
|
[23] |
Chen Y S, Gao X Y, Yang S E, Lu J X and Gu J H 2007 Acta Phys. Sin. 56 4122 (in Chinese)
|
[24] |
Gu J H, Zhou Y Q, Zhu M F, Liu F Z and Liu J L 2005 J. Non-Cryst. Solids 285 491
|
[25] |
Karabacak T, Zhao Y P, Wang G C and Lu T M 2001 Phys. Rev. B 64 085323
|
[26] |
Zhao Y P, Drotar J T, Wang G C and Lu T M 2001 Phys. Rev. Lett. 87 136102
|
[27] |
Pelliccione M, Karabacak T and Lu T M 2006 Phys. Rev. Lett. 96 146105
|
[28] |
Tang C, Slexander S and Bruinsma R 1990 Phys. Rev. Lett. 64 772
|
[29] |
Yao J H and Guo H 1993 Phys. Rev. E 47 1007
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|