Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097102    DOI: 10.1088/1674-1056/20/9/097102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electron-correlation-induced band renormalization and Mott transition in Ca1-xSrxVO3

Wang Guang-Tao(王广涛), Zhang Min-Ping(张敏平), and Zheng Li-Hua(郑立花)
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  We present the local density approximate+Gutzwiller results for the electronic structure of Ca1-xSrxVO3. The substitution of Sr2+ by Ca2+ reduces the bandwidth, as the V—O—V bond angle decreases from 180° for SrVO3 to about 160° for CaVO3. However, we find that the bandwidth decrease induced by the V—O—V bond angle decrease is smaller as compared to that induced by electron correlation. In correlated electron systems, such as Ca1-xSrxVO3, the correlation effect of 3d electrons plays a leading role in determining the bandwidth. The electron correlation effect and crystal field splitting collaboratively determine whether the compounds will be in a metal state or in a Mott-insulator phase.
Keywords:  electronic structure calculation      strongly correlated system      metal-insulator transition  
Received:  26 July 2010      Revised:  18 May 2011      Accepted manuscript online: 
PACS:  71.15.-m (Methods of electronic structure calculations)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  

Cite this article: 

Wang Guang-Tao(王广涛), Zhang Min-Ping(张敏平), and Zheng Li-Hua(郑立花) Electron-correlation-induced band renormalization and Mott transition in Ca1-xSrxVO3 2011 Chin. Phys. B 20 097102

[1] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[2] Zhuang J N, Liu Q M, Fang Z and Dai X 2010 Chin. Phys. B 19 087104
[3] Kumagai K I, Suzuki T, Taguchi Y, Okada Y, Fujishima Y and Tokura Y 1993 Phys. Rev. B 48 7636
[4] Xu X F and Zhao Q H 2009 Acta Phys. Sin. 58 1908 (in Chinese)
[5] Mahajan A V, Johnston D C, Torgeson P R and Borsa F 1992 Phys. Rev. B 46 10973
[6] Inaba F, Arima T, Ishikawa T, Katsufuji T and Tokura Y 1995 Phys. Rev. B 52 R2221
[7] Hubbard J 1963 Proc. R. Soc. London, Ser. A 276 238
[8] Wang J and Arrigoni E 2009 Chin. Phys. B 18 2475
[9] Carter S A, Rosenbaum T F, Metcalf P, Honig J M and Spalek J 1993 Phys. Rev. B 48 16841
[10] Fujimori A, Hase I, Namotame, Fujishima Y, Tokura Y, Eisaki H, Uchida S, Takegahara K and de Groot F M F 1992 Phys. Rev. Lett. 69 1796
[11] Inoue I H, Goto O, Makino H, Hussey N E and Ishikawa M 1998 Phys. Rev. B 58 4372
[12] Makino H, Inoue I H, Rozenberg M J, Hase I, Aiura Y and Onari S 1998 Phys. Rev. B 58 4384
[13] Nekrasov I A, Keller G, Londakov D E, Kozhevnikov A V, Pruschke Th, Held K, Vollhardt D and Anisimov V I 2005 Phys. Rev. B 72 155106
[14] Eguchi R, Kiss T, Tsuda S, Shimojima T, Mizokami T, Yokoya T, Chainani A, Shin S, Inoue I H, Togashi T, Watanabe S, Zhang C Q, Chen C T, Arita M, Shimada K, Namatame H and Taniguchi M 2006 Phys. Rev. Lett. 96 076402
[15] Inoue I H, Hase I, Aiura Y, Fujimori A, Haruyama Y, Maruyama T and Nishihara Y 1995 Phys. Rev. Lett. 74 2539
[16] Morikawa K, Mizokawa T, Kobayashi K, Fujimori A, Eisaki H, Uchida S, Iga F and Nishihara Y 1995 Phys. Rev. B 52 13711
[17] Aiura Y, Iga F, Nishihara Y, Ohnuki H and Kato H 1993 Phys. Rev. B 47 6732
[18] Cai L G, Liu F M and Zhong W W 2010 Chin. Phys. B 19 097101
[19] Sun B and Zhang P 2008 Chin. Phys. B 17 1364
[20] Wang G T, Dai X and Fang Z 2008 Phys. Rev. Lett. 101 066403
[21] Wang G T, Qian Y M, Xu G, Dai X and Fang Z 2010 Phys. Rev. Lett. 104 047002
[22] Deng X Y, Wang L, Dai X and Fang Z 2009 Phys. Rev. B 79 075114
[23] Inoue I R, Bergemann C, Hase I and Julian S R 2002 Phys. Rev. Lett. 88 236403
[24] Sekiyama A, Fujiwara H, Imada S, Suga S, Eisaki H, Uchida S I, Takegahara K, Harima H, Saitoh Y, Nekrasov I A, Keller G, Kondakov D E, Kozhevnikov A V, Pruschke T, Held K, Vollhardt D and Anisimov V I 2004 Phys. Rev. Lett. 93 156402
[25] Chen W B, Han M G, Zhou H, Ou Y and Deng L J 2010 Chin. Phys. B 19 087502
[26] Yoshida T, Hashimoto M, Takizawa T, Fujimori A, Kubota M, Ono K and Eisaki H 2010 Phys. Rev. B 82 085119
[27] Nakatsuji S and Maeno Y 2000 Phys. Rev. Lett. 84 2666
[28] Liebsch A 2003 Phys. Rev. Lett. 90 096401
[29] Fang Z, Nagaosa N and Terakura K 2004 Phys. Rev. B 69 045116
[30] Yoshimatsu K, Okabe T, Kumigashira H, Okamoto S, Aizaki K, Fujimori A and Oshima M 2010 Phys. Rev. Lett. 104 147601
[1] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[2] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[3] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[4] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[5] Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays
Zhangyang Zhou(周章洋), Jia Yang(杨佳), Yi Liu(刘艺), Zhipeng Gao(高志鹏), Linhong Cao(曹林洪), Leiming Fang(房雷鸣), Hongliang He(贺红亮), and Zhengwei Xiong(熊政伟). Chin. Phys. B, 2021, 30(12): 126803.
[6] Relevance of 3d multiplet structure in nickelate and cuprate superconductors
Mi Jiang(蒋密). Chin. Phys. B, 2021, 30(10): 107103.
[7] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[8] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[9] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[10] Quantum critical duality in two-dimensional Dirac semimetals
Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2019, 28(1): 017402.
[11] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
[12] Electron localization in ultrathin films of three-dimensional topological insulators
Jian Liao(廖剑), Gang Shi(史刚), Nan Liu(刘楠), Yongqing Li(李永庆). Chin. Phys. B, 2016, 25(11): 117201.
[13] Disorder effects in topological states: Brief review of the recent developments
Binglan Wu(吴冰兰), Juntao Song(宋俊涛), Jiaojiao Zhou(周娇娇), Hua Jiang(江华). Chin. Phys. B, 2016, 25(11): 117311.
[14] Structure-dependent metal—insulator transition in one-dimensional Hubbard superlattice
Zhang Liang-Liang (张亮亮), Huang Jin (黄金), Duan Cheng-Bo (段丞博), Wang Wei-Zhong (王为忠). Chin. Phys. B, 2015, 24(7): 077101.
[15] Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings
Xiong Yong-Chen (熊永臣), Wang Wei-Zhong (王为忠), Yang Jun-Tao (杨俊涛), Huang Hai-Ming (黄海铭). Chin. Phys. B, 2015, 24(2): 027501.
No Suggested Reading articles found!