Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 094102    DOI: 10.1088/1674-1056/20/9/094102
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Terahertz wave polarization rotation in bianisotropic metamaterials

Shi Yu-Lei(施宇蕾), Zhou Qing-Li(周庆莉), Liu Wei(刘维), Zhao Dong-Mei(赵冬梅), Li Lei(李磊), and Zhang Cun-Lin(张存林)
Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics of Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  Utilizing a polarization sensitive terahertz detection method where the detector is rotated by either 0° or 90° to measure the electric field Ep, s (t) of each polarization component, we have characterized the properties of split ring resonators. The strong polarization dependence of the bianisotropic-circular-current-driven and linear-polarization-induced resonances is in excellent agreement with the simulation when the p-polarized terahertz transmission is measured. However, these electromagnetic responses vanish when the s-polarized terahertz transmission is measured. There is only a transmission minimum at 1.64 THz and the terahertz polarization rotation angle of about 90° is observed. The polarized terahertz transmission amplitudes and spectra detected at orthogonal orientations show that these behaviours are probably attributed to the birefringent effect of the sample.
Keywords:  terahertz      metamaterials      birefringent effect      bianisotropic effect  
Received:  04 March 2011      Revised:  03 April 2011      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.20.Ek (Optical activity)  
  42.25.Ja (Polarization)  

Cite this article: 

Shi Yu-Lei(施宇蕾), Zhou Qing-Li(周庆莉), Liu Wei(刘维), Zhao Dong-Mei(赵冬梅), Li Lei(李磊), and Zhang Cun-Lin(张存林) Terahertz wave polarization rotation in bianisotropic metamaterials 2011 Chin. Phys. B 20 094102

[1] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[2] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1494
[3] Chen S H, Chen J, Deng S Z and Xu N S 2010 Chin. Phys. B 19 037803
[4] Yang Y, Liu Y L, Zhu K, Zhang L Y, Ma S Y, Liu J and Jiang Y J 2010 Chin. Phys. B 19 037802
[5] Chen Y S, Yang S E, Wang J H, Lu J X, Gao X Y and Gu J H 2010 Chin. Phys. B 19 057205
[6] Chen Y S, Xu Y H, Gu J H, Lu J X, Yang S E and Gao X Y 2010 Chin. Phys. B 19 087206
[7] Wang J X, Qin Y L, Yan H Q, Gao P Q, Li J S, Yin M and He D Y 2009 Chin. Phys. B 18 773
[8] Xu D Q, Zhang Y M, Zhang Y M, Li P X and Wang C 2009 Chin. Phys. B 18 1637
[9] Zhang C M, Wang J L, Wei P F, Song L W, Li C, Kim C J and Leng Y X 2009 Chin. Phys. B 18 1469
[10] Moser H O, Casse B D F, Wilhelmi O and Saw B T 2005 Phys. Rev. Lett. 94 063901
[11] Xu X L, Quan B G, Gu C Z and Wang L 2006 J. Opt. Soc. Am. B 23 1174
[12] Wu D M, Fang N, Sun C, Zhang X, Padilla W, Basov D, Smith D and Schultz S 2003 Appl. Phys. Lett. 83 201
[13] Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T, and Soukoulis C M 2004 Science 306 1351
[14] Ferguson B and Zhang X C 2002 Nature Mater. 1 26
[15] Padilla W J, Taylor A J, Highstrete C, Lee M and Averitt R D 2006 Phys. Rev. Lett. 96 107401
[16] Liu J, Guo X, Dai J and Zhang X C 2008 Appl. Phys. Lett. 93 171102
[17] Pearce J, Jian Z and Mittleman D M 2004 Opt. Lett. 29 2926
[18] Zhang L, Zhong H, Deng C, Zhang C and Zhao Y 2009 Appl. Phys. Lett. 94 211106
[19] Shi Y, Zhou Q L, Zhang C and Jin B 2006 Appl. Phys. Lett. 93 121115
[20] Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J and Alexander M 1994 Appl. Phys. Lett. 64 1324
[21] Wu Q, Litz M and Zhang X C 2006 Appl. Phys. Lett. 68 2924
[22] Zhang R, Cui Y, Sun W and Zhang Y 2008 Appl. Opt. 47 6422
[23] Marqu'es R, Medina F and Rafii-El-Idrissi R 2002 Phys. Rev. B 65 144440
[24] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[12] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[13] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[14] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[15] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
No Suggested Reading articles found!