Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 074203    DOI: 10.1088/1674-1056/20/7/074203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Far-field divergence of a vectorial plane wave diffracted by a circular aperture from the vectorial structure

Zhou Guo-Quan(周国泉)
School of Sciences, Zhejiang A & F University, Lin'an 311300, China
Abstract  Based on the vectorial structure of an electromagnetic wave, the analytical and concise expressions for the TE and TM terms of a vectorial plane wave diffracted by a circular aperture are derived in the far-field. The expressions of the energy flux distributions of the TE term, the TM term and the diffracted plane wave are also presented. The ratios of the power of the TE and TM terms to that of the diffracted plane wave are examined in the far-field. In addition, the far-field divergence angles of the TE term, the TM term and the diffracted plane wave, which are related to the energy flux distribution, are investigated. The different energy flux distributions of the TE and TM terms result in the discrepancy of their divergence angles. The influences of the linearly polarized angle and the radius of the circular aperture on the far-field divergence angles of the TE term, the TM term and the diffracted plane wave are discussed in detail. This research may promote the recognition of the optical propagation through a circular aperture.
Keywords:  divergence      plane wave      vectorial structure      diffraction  
Received:  18 November 2010      Revised:  07 January 2011      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Ja (Polarization)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.79.Ag (Apertures, collimators)  

Cite this article: 

Zhou Guo-Quan(周国泉) Far-field divergence of a vectorial plane wave diffracted by a circular aperture from the vectorial structure 2011 Chin. Phys. B 20 074203

[1] Stratton J A and Chu L J 1939 Phys. Rev. 56 99
[2] Freude W and Grau G K 1995 J. Lightwave Technol. 13 24
[3] Mitrofanov O, Lee M, Hsu J W P, Pfeifer L N, West K W, Wynn J D and Federici J F 2001 Appl. Phys. Lett. 79 907
[4] Gillen G D and Guha S 2004 Am. J. Phys. 72 1195
[5] Guha S and Gillen G 2005 Opt. Express 13 1424
[6] Guo H M, Chen J B and Zhuang S L 2006 Opt. Express 14 2095
[7] Mart'hinez-Herrero R, Mej'hias P M, Bosch S and Carnicer A 2001 J. Opt. Soc. Am. A 18 1678
[8] Mej'hias P M, Mart'hinez-Herrero R, Piquero G and Movilla J M 2002 Prog. Quantum Electron. 26 65
[9] Zhou G Q 2006 Opt. Lett. 31 2616
[10] Deng D M and Guo Q 2007 Opt. Lett. 32 2711
[11] Zhou G Q, Chu X X and Zheng J 2008 Opt. Commun. 281 1929
[12] Zhou G Q 2008 Opt. Express bf16 3504
[13] Zhou G Q 2010 Opt. Commun. 283 3383
[14] Zhou G Q, Chu X X and Zheng J 2008 Chin. Opt. Lett. 6 395
[15] Porras M A 1999 Optik 110 417
[16] Duan K L and Lü B D 2005 Opt. Laser Technol. 37 193
[17] Porras M A 1996 Opt. Commun. 127 79
[18] Carter W H 1972 J. Opt. Soc. Am. 62 1195
[19] Duan K L and Lü B D 2003 Opt. Express bf11 1474
[20] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[21] Gong Z Q and Liu J Q 2010 Chin. Phys. B bf19 067303
[22] Chen B S and Pu J X 2010 Chin. Phys. B bf19 074202
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[3] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[4] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[5] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[6] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[7] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[8] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[9] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[10] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
[11] Design of an ultrafast electron diffractometer with multiple operation modes
Chun-Long Hu(胡春龙), Zhong Wang(王众), Yi-Jie Shi(石义杰), Chang Ye(叶昶), and Wen-Xi Liang(梁文锡). Chin. Phys. B, 2021, 30(9): 090701.
[12] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
[13] Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4
Yi Liu(刘义), Jun Shen(沈俊), Zunming Lu(卢遵铭), Baogen Shen(沈保根), and Liqin Yan(闫丽琴). Chin. Phys. B, 2021, 30(6): 067502.
[14] Modified scaling angular spectrum method for numerical simulation in long-distance propagation
Xiao-Yi Chen(陈晓义), Ya-Xuan Duan(段亚轩), Bin-Bin Xiang(项斌斌), Ming Li(李铭), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(3): 034203.
[15] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
No Suggested Reading articles found!