Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 074204    DOI: 10.1088/1674-1056/20/7/074204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Time evolution of distribution functions in dissipative environments

Hu Li-Yun(胡利云)a), Chen Fei(陈菲)a), Wang Zi-Sheng(王资生)a), and Fan Hong-Yi(范洪义)b)
a College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; b Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
Abstract  By introducing the thermal entangled state representation, we investigate the time evolution of distribution functions in the dissipative channels by bridging the relation between the initial distribution function and the any time distribution function. We find that most of them are expressed as such integrations over the Laguerre—Gaussian function. Furthermore, as applications, we derive the time evolution of photon-counting distribution by bridging the relation between the initial distribution function and the any time photon-counting distribution, and the time evolution of R-function characteristic of nonclassicality depth.
Keywords:  entangled state representation      dissipative environment      photon-counting distribution      R-function  
Received:  19 November 2010      Revised:  06 January 2011      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  

Cite this article: 

Hu Li-Yun(胡利云), Chen Fei(陈菲), Wang Zi-Sheng(王资生), and Fan Hong-Yi(范洪义) Time evolution of distribution functions in dissipative environments 2011 Chin. Phys. B 20 074204

[1] Moya-Cessa H 2006 Phys. Rep. 432 1
[2] Fan H Y and Hu L Y 2008 Opt. Commun. 281 5571
[3] Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[4] Fan H Y and Hu L Y 2009 Commun. Theor. Phys. 52 729
[5] Fan H Y and Hu L Y 2009 Opt. Commun. 282 932
[6] Jaffe C, Kanfer S and Brumer P 1985 Phys. Rev. Lett. 54 8
[7] Wilkie J and Brumer P 2000 Phys. Rev. A 61 064101
[8] Lee C T 1991 Phys. Rev. A 44 R2775
[9] Fan H Y and Fan Y 2001 Phys. Lett. A 282 269
[10] Fan H Y and Fan Y 2002 J. Phys. A 35 6873
[11] Takahashi Y and Umezawa H 1975 Int. J. Mod. Phys. B bf2 55
[12] Umezawa H 1993 Advanced Field Theory — Micro, Macro, and Thermal Physics (New York: AIP)
[13] Takahashi Y and Umezawa H 1975 Collecive Phenomena 2 55
[14] Gardiner C and Zoller P 2000 Quantum Noise (Berlin: Springer)
[15] Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific & Technical Press) p. 114 (in Chinese)
[16] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[17] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[18] Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag) Appendix A
[19] Hu L Y and Fan H Y 2009 Opt. Commun. 282 4379
[20] Fan H Y and Hu L Y 2008 Opt. Lett. 33 443
[21] Hu L Y, Wang Z S, Kwek L C and Fan H Y 2010 20 (in press)
[22] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[23] Glauber R J 1963 Phys. Rev. 130 2529
[24] Klauder J R and Skargerstam B S 1985 Coherent States (Singapore: World Scientific)
[25] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
[26] Yang Y and Li F L 2009 J. Opt. Soc. Am. B 26 830
[27] Mehta C L 1967 Phys. Rev. Lett. 18 752
[28] Carmichael H J 1999 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Berlin: Springer-Verlag)
[29] Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1995
[30] Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
[31] Fan H Y, Ren G, Hu L Y and Jiang N Q 2010 Chin. Phys. B 19 114206
[32] Fan H Y, Yuan H C and Hu L Y 2010 Chin. Phys. B 19 104204
[33] Fan H Y 2010 Chin. Phys. B 19 050303
[1] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[2] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[3] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[4] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[5] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[6] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[7] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[8] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[9] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[10] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[11] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[12] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[13] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[14] The Fresnel–Weyl complementary transformation
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2012, 21(10): 100302.
[15] Quantum mechanical photoncount formula derived by entangled state representation
Hu Li-Yun(胡利云), Wang Zi-Sheng(王资生), L. C. Kwek, and Fan Hong-Yi(范洪义). Chin. Phys. B, 2011, 20(8): 084203.
No Suggested Reading articles found!