Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 068502    DOI: 10.1088/1674-1056/20/6/068502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Fabrication of 160-nm T-gate metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by metal organic chemical vapour deposition

Li Hai-Ou(李海鸥)a)c)†, Huang Wei(黄伟) b), Tang Chak Wah(邓泽华)c), Deng Xiao-Fang(邓小芳)a), and Lau Kei May(刘纪美) c)
a Information and Communication College, Guilin University of Electronic Technology, Guilin 541004, China; The 58th Research Institute, China Electronics Technology Group Corporation, Wuxi 214061, China;  cDepartment of Electronics and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
Abstract  The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ωmm. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6. Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device.
Keywords:  GaAs      metamorphic      high electron mobility transistor      metal-organic chemical vapour deposition  
Received:  27 December 2010      Revised:  14 January 2011      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  77.55.+f  
  81.15.Ef  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by CERG Grant (615506) from the Research Grants Council of Hong Kong Special Administrative Region of China and Intel Corporation, Science and Technology Plan of the Education Bureau of Guangxi Zhuang Autonomous Region of China (Grant No. 200911MS93).

Cite this article: 

Li Hai-Ou(李海鸥), Huang Wei(黄伟), Tang Chak Wah(邓泽华), Deng Xiao-Fang(邓小芳), and Lau Kei May(刘纪美) Fabrication of 160-nm T-gate metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by metal organic chemical vapour deposition 2011 Chin. Phys. B 20 068502

[1] Lee K S, Kim Y S, Hong Y K and Jeong Y H 2007 IEEE Electron. Device Lett. 28 672
[2] Hoke W E, Kennedya T D, Torabia A, Whelana C S, Marsha P F, Leoni and Xu C 2003 J. Crystal Growth 251 827
[3] Washima M, Tanaka T and Hashimoto T 2001 HITACHI CABLE REVIEW 20 39
[4] Ge J, Jin Z, Su Y B, Cheng W, Liu X Y and Wu D X 2009 Acta Phys. Sin. 58 1272 (in Chinese)
[5] Pan N, Elliott J, Hendriks H, Aucoin L, Fay P and Adesida I 1995 Appl. Phys. Lett. 66 212
[6] Hsu W C, Huang D H, Lin Y S, Chen Y J, Huang J C and Wu C L 2006 IEEE Trans. Electron. Dev. 53 406
[7] Gu Y, Wang K, Li Y Y, Li C and Zhang Y G 2010 Acta Phys. Sin. 19 077304 (in Chinese)
[8] Tang C W, Li J, Lau K M and Chen K J 2006 Compd. Semicond. Mantech. 24 243
[9] Li H, Tang C W, Chen K J and Lau K M 2007 Compd. Semicond. Mantech. 25 15
[10] Xu J B, Zhang H Y, Fu X J, Guo T Y and Huang J 2010 Chin. Phys. 19 037302
[11] Lien Y C, Chang E Y, Chang H C, Chu L H, Huang C W, Lee H M, Lee C S, Chen S H, Shen P T and Chang C Y 2004 IEEE Electron. Device Lett. 25 348
[12] Lee B Y, An D, Lee M K, Lim B O, Kim S D and Rhee J K 2004 IEEE Electron. Device Lett. 25 766
[13] Yoon H S, Lee J H, Shim J Y, Hong J Y, Kang D M, Chang W J, Kim H C and Cho K I 2003 Indium Phosphide and Related Materials 12 114
[14] Kim S and Adesida I 2006 IEEE Electron. Device Lett. 27 873
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[5] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[6] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[7] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[10] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[13] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[14] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[15] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
No Suggested Reading articles found!