Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 068501    DOI: 10.1088/1674-1056/20/6/068501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

First principles simulation technique for characterizing single event effects

Zhang Ke-Ying (张科营)a, Guo Hong-Xia (郭红霞)aLuo Yin-Hong (罗尹虹)aFan Ru-Yu (范如玉)aChen Wei (陈伟)aLin Dong-Sheng (林东生)aGuo Gang (郭刚)bYan Yi-Hua (闫逸华)c
a Northwest Institute of Nuclear Techniques, Xi'an 710024, China; b China Institute of Atomic Energy, Beijing 102413, China; c Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Abstract  This paper develops a new simulation technique to characterize single event effects on semiconductor devices. The technique used to calculate the single event effects is developed according to the physical interaction mechanism of a single event effect. An application of the first principles simulation technique is performed to predict the ground-test single event upset effect on field-programmable gate arrays based on 0.25 μm advanced complementary metal-oxide-semiconductor technology. The agreement between the single event upset cross section accessed from a broad-beam heavy ion experiment and simulation shows that the simulation technique could be used to characterize the single event effects induced by heavy ions on a semiconductor device.
Keywords:  single event effect      static random access memory      cross section      simulation  
Received:  17 June 2010      Revised:  14 March 2011      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  61.81.Fk  

Cite this article: 

Zhang Ke-Ying (张科营), Guo Hong-Xia (郭红霞), Luo Yin-Hong (罗尹虹), Fan Ru-Yu (范如玉), Chen Wei (陈伟), Lin Dong-Sheng (林东生), Guo Gang (郭刚), Yan Yi-Hua (闫逸华) First principles simulation technique for characterizing single event effects 2011 Chin. Phys. B 20 068501

[1] Dodd P E and Massengill Lloyd W 2003 IEEE Trans. Nucl. Sci. 50 583
[2] Reed R A, Weller R A and Mendenhall M H 2007 IEEE Trans. Nucl. Sci. 54 2312
[3] Shaneyfelt M R, Schwank J R and Dodd P E 2008 IEEE Trans. Nucl. Sci. 55 1926
[4] Black J D, Ball D R and Robinson W H 2008 IEEE Trans. Nucl. Sci. 55 2943
[5] Srour J R 2003 IEEE Trans. Nucl. Sci. 50 653
[6] Hughes H L 2003 IEEE Trans. Nucl. Sci. 50 500
[7] Petersen E L 1997 IEEE Trans. Nucl. Sci. 44 2174
[8] Palau J M 2001 IEEE Trans. Nucl. Sci. 48 225
[9] Dodd P E 1996 IEEE Trans. Nucl. Sci. 43 561
[10] Inguimbert C, Duzellier S and Ecoffet R 2002 IEEE Trans. Nucl. Sci. 49 1480
[11] Xapsos M A 2004 IEEE Trans. Nucl. Sci. 51 3250
[12] Dodds N A and Reed R A 2009 IEEE Trans. Nucl. Sci. 56 3172
[13] Palau J M and Wrobel F 2002 IEEE Trans. Nucl. Sci. 49 3075
[14] Kevin R A and Warren W M 2007 IEEE Trans. Nucl. Sci. 54 988
[15] Yui C, Swift G and Carmichael C 2002 Single Event Upset Susceptibility Testing of the Xilinx Virtex-II FPGA
[16] Messenger S R 2003 IEEE Trans. Nucl. Sci. 50 1919
[17] Dodd P E 2007 IEEE Trans. Nucl. Sci. 54 889
[18] Palau J M 2001 IEEE Trans. Nucl. Sci. 48 225
[19] Dodd P E 2007 IEEE Trans. Nucl. Sci. 54 2303
[20] Emfietzoglou D 2004 IEEE Trans. Nucl. Sci. 51 2872
[21] Petersen E 1996 IEEE Trans. Nucl. Sci. 43 2805
[22] Messenger S R 2004 IEEE Trans. Nucl. Sci. 51 2846
[23] Zhu X 2000 IEEE Trans. Nucl. Sci. 47 2568
[34] Tipton A D 2006 IEEE Trans. Nucl. Sci. 53 3259
[25] Dodd P E 1996 IEEE Trans. Nucl. Sci. 43 2797
[26] Mayaram K 1993 IEEE Trans. Nucl. Sci. 23 1726
[27] Sze S M 1981 Physics of Semiconductor Devices (New York: John Wiley & Sons, Inc) pp. 530-570
[28] Metzger S, Dreute J and Heinrich W 1994 IEEE Trans. Nucl. Sci. 41 589
[29] Smith E C 1995 IEEE Trans. Nucl. Sci. 42 1772
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[7] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[8] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[12] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[13] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[14] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[15] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
No Suggested Reading articles found!