Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067804    DOI: 10.1088/1674-1056/20/6/067804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photoluminescence spectroscopy of defects in ZnO nano/microwires

Sun Xiang-Bing(孙香冰)a), Feng Lin(冯林)b)†, and Jiao Xian-Wei(焦现炜)a)
a 72465 Unit of the PLA, Jinan 250022, China; b School of Physics, Shandong University, Jinan 250100, China
Abstract  Photoluminescence spectroscopy is used to study defects found in single ZnO nano/microwires at 90 K. The defect, acting as binding site for bound exciton (BX) transition, is represented by BF, the fractional intensity of the BX peak in the whole near-band edge ultraviolet (UV) luminescence. The concentration of defects as origins of the visible emissions is proportional to the intensity fraction DF, i.e., the intensity fraction of visible emissions in the sum total of all UV and visible luminescences. By comparing BF and DF, it is concluded that the two defects are not correlated to each other. The former kind of defect is considered to be related to the blueshift of the near-band edge peak as the radius of the nano/microwires decreases at room temperature.
Keywords:  ZnO      photoluminescence      defect  
Received:  29 August 2010      Revised:  08 October 2010      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  78.55.Et (II-VI semiconductors)  
  42.62.Fi (Laser spectroscopy)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  

Cite this article: 

Sun Xiang-Bing(孙香冰), Feng Lin(冯林), and Jiao Xian-Wei(焦现炜) Photoluminescence spectroscopy of defects in ZnO nano/microwires 2011 Chin. Phys. B 20 067804

[1] Pearton S J 2003 J. Appl. Phys. 93 1
[2] Cao M S, Li X, Liu Y, Wang F C, Zhai F F and Zhang X X 2007 Chin. Phys. 16 2769
[3] Cox S F J, Davis E A, Cottrell S P, King P J C, Lord J S, Gil J M, Alberto H V, Vil ao R C, Duarte J P, Campos N A, Weidinger A, Lichti R L and Irvine S J C 2001 Phys. Rev. Lett. 86 2601
[4] Li S T, Cheng P F, Zhao L and Li J Y 2009 Acta Phys. Sin. 58 523 (in Chinese)
[5] Cui J B 2008 J. Phys. Chem. C 112 10385
[6] Chen C W, Chen K H, Shen C H, Ganuly A, Chen L C, Wu J J, Wen H I and Pong W F 2006 Appl. Phys. Lett. 88 241905
[7] Pan N, Wang X P, Li M, Li F Q and Hou J G 2007 J. Phys. Chem. C 111 17265
[8] Feng L, Cheng C, Lei M, Wang N and Loy M M T 2008 Nanotechnology 19 405702
[9] Hamby D W, Lucca A A, Klopfstein M J and Cantwell G 2003 J. Appl. Phys. 93 3214
[10] Wang L J and Giles N C 2003 J. Appl. Phys. 94 973
[11] Teke A, özgür ü, Dovgan S, Gu X, Morkoupvarsigma H, Nemeth B, Nause J and Everitt H O 2004 Phys. Rev. B 70 195207
[12] Cuong T T, Matthew F and Matthew R P 2008 Nanotechnology 19 415606
[13] Yao B D, Feng L, Cheng C, Loy M M T and Wang N 2010 Appl. Phys. Lett. 96 223105
[14] Yang Y H, Chen X Y, Feng Y and Yang G W 2007 Nano Lett. 7 3879
[15] Shan W, Walukiewicz W, Ager III J W, Yu K M, Yuan H B, Xin H P, Cantwell G and Song J 2005 Appl. Phys. Lett. 86 191911
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[5] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[8] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[9] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[12] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[13] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[14] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[15] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
No Suggested Reading articles found!