Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067101    DOI: 10.1088/1674-1056/20/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure of twinned ZnS nanowires

Li Deng-Feng(李登峰)a)†, Li Bo-Lin(李柏林)a), Xiao Hai-Yan(肖海燕)b), and Dong Hui-Ning(董会宁) a)
a Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; b Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.
Keywords:  ZnS nanowires      twin plane      density of states      charge density distribution      density functional theory  
Received:  11 November 2010      Revised:  28 December 2010      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 10947102) and the Foundation of the Education Committee of Chongqing (Grant No. KJ090503).

Cite this article: 

Li Deng-Feng(李登峰), Li Bo-Lin(李柏林), Xiao Hai-Yan(肖海燕), and Dong Hui-Ning(董会宁) Electronic structure of twinned ZnS nanowires 2011 Chin. Phys. B 20 067101

[1] Yamamoto T, Kishimoto S and Iida S 2001 Physica B 308-310 916
[2] Jiang Y, Meng X, Liu J, Xie Z, Lee C S and Lee S T 2003 Adv. Mater. 15 323
[3] Li Y Q, Zapien J A, Shan Y Y, Liu Y K and Lee S T 2006 Appl. Phys. Lett. 88 013115
[4] Xu C N, Watanabe T, Akiyama M and Zhang X G 1999 Appl. Phys. Lett. 74 1236
[5] Ding Y, Wang X D and Wang Z L 2004 Chem. Phys. Lett. 398 32
[6] Akiyama T, Sano K, Nakamura K and Ito T 2007 Jpn. J. Appl. Phys. 46 1783
[7] Hao Y, Meng G, Wang Z L, Ye C and Zhang L 2006 Nano Lett. 6 1650
[8] Geng B Y, Liu X W, Du Q B, Wei X W and Zhang L D 2006 Appl. Phys. Lett. 88 163104
[9] Li Q, Gong X G, Wang C, Wang J, Ip K and Hark S 2004 Adv. Mater. 16 1436
[10] Wang Y Q, Philipose U, Xu T, Ruda H E and Kavanagh K L 2007 Semicond. Sci. Technol. 22 175
[11] Zhang Z H, Wang F F and Duan X F 2007 J. Crystal Growth 202 612
[12] Meng Q F, Jiang C B and Mao S C 2008 J. Crystal Growth 310 4481
[13] Zhang J, Jiang F H and Dai Z H 2010 J. Phys. Chem. C 114 294
[14] Chen H X, Shi D N, Qi J S, Jia J M and Wang B L 2009 Phys. Lett. A 373 371
[15] Xu H, Li Y, Rosa A L, Frauenheim Th and Zhang R Q 2008 J. Phys. Chem. C 112 20291
[16] Hu C E, Zeng Z Y, Cheng Y, Chen X R and Cai L C 2008 Chin. Phys. B 17 3867
[17] Chen X R, Hu C E, Zeng Z Y and Cai L C 2008 Chin. Phys. Lett. 25 1064
[18] Northrup J E and Cohen M L 1981 Phys. Rev. B 23 2563
[19] Algra R E, Verheijen M A, Borgström M T, Femeasurablemink L F, Enckevort W J P van, Vlieg E and Bakkers E P A M 2008 Nature 456 369
[20] Wang Z G, Li J B, Gao F and Weber W J 2010 Acta Materialia 58 1963
[21] Shu H B, Chen X S, Zhao H X, Zhou X H and Lu W 2010 J. Phys. Chem. C 114 17517
[23] Li J, Li Z Y, Zhou G, Liu Z R, Wu J, Gu B L, Lhm J S and Duan W H 2010 Phys. Rev. B 82 115410
[24] Li D F, Xiao H Y, Zu X T, Dong H N and Gao F 2010 Chin. Phys. B 19 087102
[25] Zhang F C, Zhang Z Y, Zhang W F, Yan J F and Yong J N 2009 Chin. Phys. B 18 2508
[26] Luo Y P, Tian L G, Lee M X and Li F Y 2010 Chin. Phys. B 19 027102
[27] Kresse G and Joubert D 1996 Comput. Mater. Sci. 6 15
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Perdew J P, Chevary J P, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[30] White J A and Bird D M 1994 Phys. Rev. B 50 4954
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!