Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 054210    DOI: 10.1088/1674-1056/20/5/054210
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes

Yuan Jin-Hui (苑金辉)a, Sang Xin-Zhu (桑新柱)aYu Chong-Xiu (余重秀)aXin Xiang-Jun (忻向军)aShen Xiang-Wei (申向伟)a Zhang Jin-Long (张锦龙)aZhou Gui-Yao (周桂耀)bLi Shu-Guang (李曙光)bHou Lan-Tian (侯蓝田)b 
a Key Laboratory of Information Photonics and Optical Communications (BUPT) of Ministry of Education, Institute of Optical Communication and Optoelectronics, Beijing University of Posts and Telecommunications, Beijing 100876, China; b Institute of Infrared Optical Fibers and Sensors, College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract  By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti: sapphire laser into the fundamental mode of photonic crystal fibre (PCF) with central holes fabricated through extracting air from the central hole, the broad and ultra-flattened supercontinuum (SC) in the visible wavelengths is generated. When the fundamental mode experiences an anomalous dispersion regime, three phases in the SC generation process are primarily presented. The SC generation (SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings. The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071, respectively.
Keywords:  photonic crystal fibre (PCF)      fundamental mode      broad and ultra-flattened supercontinuum      visible wavelengths  
Received:  21 August 2010      Revised:  20 January 2011      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.81.Bm (Fabrication, cladding, and splicing)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Key Basic Research Special Foundation of China (Grant No. 2010CB327605 and 2010CB328300), National High-Technology Research and Development Program of China (Grant No. 2009AA01Z220), the Key Program of Chinese Ministry of Education (Grant No. 109015), the Discipline Co-construction Project of Beijing Municipal Commission of Education (Grant No. YB20081001301), the Open Fund of Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) of Ministry of Education, and the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications, China (Grant No. CX201023).

Cite this article: 

Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Shen Xiang-Wei (申向伟), Zhang Jin-Long (张锦龙), Zhou Gui-Yao (周桂耀), Li Shu-Guang (李曙光), Hou Lan-Tian (侯蓝田) Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes 2011 Chin. Phys. B 20 054210

[1] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
[2] Alfano R R and Shapiro S L 1970 Phys. Rev. Lett. 24 584
[3] Foster M A, Dudley J M, Kibler B, Cao Q, Lee D, Trebino R and Gaeta A L 2005 Appl. Phys. B 81 363
[4] Kibler B, Dudley J M and Coen S 2005 Appl. Phys. B 81 337
[5] Kolesik M, Wright E M and Moloney J V 2004 Appl. Phys. B 79 293
[6] McConnell G and Riis E 2004 Appl. Phys. B 78 557
[7] Nicholson J W, Abeeluck A K, Headley C, Yan M F and Jorgensen C G 2003 Appl. Phys. B 77 211
[8] Town G E, Funaba T, Ryan T and Lyytikainen K 2003 Appl. Phys. B 77 235
[9] Liu W H, Song X Z, Wang Y S, Liu H J, Zhao W, Liu X M, Peng Q J and Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese)
[10] Chen Y Z, Li Y Z, Qu G and Xu W C 2006 Acta Phys. Sin. 55 717 (in Chinese)
[11] Duan Z L Li Y F Liu H J Liu W H Peng Q J Wang Y S Xu Z Y and Zhao W 2006 Acta Phys. Sin. 55 1815 (in Chinese)
[12] Liu B W, Hu M L, Fang X H, Li Y F, Chai L ,Wang C Y, Tong W J, Luo J, Voronin A A and Zheltikov A M 2008 Opt. Express 16 14987
[13] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25
[14] Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J and Coen S 2002 J. Opt. Soc. Am. B 19 765
[15] Gaeta A 2002 Opt. Lett. 27 924
[16] Cristiani I, Tediosi R, Tartara L and Degiorgio V 2004 Opt. Express 12 4366
[17] Genty G, Lehtonen M, Ludvigsen H and Kaivola M 2004 Opt. Express 12 124
[18] Wadsworth W, Joly N, Knight J C, Birks T A, Biancalana F and Russell P S J 2004 Opt. Express 12 299
[19] Tartara L, Cristiani I, Degiorgo V, Carbone F, Faccio D, Romagnoli M and Belardi W 2003 Opt. Commun. 215 191
[20] Lee J H, Hove J V, Xu C, Ramachandran S, Ghalmi S and Yan M F 2007 Opt. Lett. 32 1053
[21] Efimov A, Taylor A, Omenetto F, Knight J C, Wadsworth W and Russell P St J 2003 Opt. Express 11 2567
[22] Efimov A, Taylor A, Omenetto F, Knight J C, Wadsworth W and Russell P S J 2003 Opt. Express 11 910
[23] Ravi V V, Kumar K, George A K, Reeves W H, Knight J C, Russell P St J, Omenetto F G and Taylor A J 2002 Opt. Express 10 1520
[24] Kudlinski A and Mussot A 2008 Opt. Lett. 33 2407
[25] Cumberland B A, Travers J C, Popov S V and Taylao J R 2008 Opt. Lett. 33 2122
[26] Cherif R, Zghal M, Tartara L and Degiorgio V 2008 Opt. Express 16 2147
[27] Frosz M H, Moselund P M, Rasmussen Per D, Thomsen C L and Bang O 2008 Opt. Express 16 21076
[28] Zhou G Y, Hou Z Y and Hou L T 2006 Appl. Opt. 45 1
[29] Wang W, Gao F, Hou L T and Zhou G Y 2008 Chin. Phys. Lett. 25 2055
[30] White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, de Sterke C M and Botten L C 2002 J. Opt. Soc. B 19 2322 endfootnotesize
[1] Scaling of Yb-doped photonic crystal fiber to 200 μm core diameter for high beam quality laser output
Kuo Meng(孟阔), Lian-Qing Zhu(祝连庆), Fei Luo(骆飞). Chin. Phys. B, 2017, 26(5): 054212.
[2] Single fundamental mode photonic crystal VCSEL with high power and low threshold current optimized by modal loss analysis
Yi-Yang Xie(解意洋), Qiang Kan(阚强), Chen Xu(徐晨), Kun Xu(许坤), Hong-Da Chen(陈弘达). Chin. Phys. B, 2017, 26(1): 014203.
[3] Ultra-violet and mid-infrared continuum generation by cross-phase modulation between red-shifted solitons and blue-shifted dispersive waves in a photonic crystal fiber
Shen Xiang-Wei(申向伟), Yuan Jin-Hui(苑金辉), Sang Xin-Zhu(桑新柱), Yu Chong-Xiu(余重秀), Rao Lan(饶岚), Xin Xiang-Jun(忻向军), Xia Min(夏民), Han Ying(韩颖), Xia Chang-Ming(夏长明), and Hou Lan-Tian(侯蓝田) . Chin. Phys. B, 2012, 21(7): 074209.
[4] A dark hollow beam from a selectively liquid-filled photonic crystal fibre
Zhang Mei-Yan(张美艳), Li Shu-Guang(李曙光), Yao Yan-Yan(姚艳艳), Fu Bo(付博), and Zhang Lei(张磊). Chin. Phys. B, 2010, 19(4): 047103.
[5] Influence of spherical aberrations on fundamental mode beam quality under different laser resonators
Xiang Zhen(项震), Hu Miao(胡淼), Ge Jian-Hong(葛剑虹), Zhao Zhi-Gang(赵智刚), Wang Sha(汪莎), Liu Chong(刘崇), and Chen Jun(陈军). Chin. Phys. B, 2009, 18(7): 2806-2815.
[6] Design and analysis of a novel single-mode single-polarization photonic crystal fibre based on polarization-dependent coupling and absorption effect
Liu Xiao-Yi(刘小毅), Zhang Fang-Di(张方迪), Zhang Min(张民), and Ye Pei-Da(叶培大). Chin. Phys. B, 2007, 16(6): 1710-1718.
[7] Polarization-maintaining photonic crystal fibre
Lou Shu-Qin (娄淑琴), Wang Zhi (王智), Ren Guo-Bin (任国斌), Jian Shui-Sheng (简水生). Chin. Phys. B, 2004, 13(7): 1052-1058.
No Suggested Reading articles found!