Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 048903    DOI: 10.1088/1674-1056/20/4/048903
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Undetermination of the relation between network synchronizability and betweenness centrality

Wang Sheng-Jun(王圣军)a), Wu Zhi-Xi(吴枝喜)a)b), Dong Hai-Rong(董海荣) c), and Chen Guan-Rong(陈关荣)a)
a Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China; b Department of Physics, Umeoa University, 90187 Umeå, Sweden; c College of Electrical and Information Engineering, Beijing Jiao Tong University, Beijing 100044, China
Abstract  Betweenness centrality is taken as a sensible indicator of the synchronizability of complex networks. To test whether betweenness centrality is a proper measure of the synchronizability in specific realizations of random networks, this paper adds edges to the networks and then evaluates the changes of betweenness centrality and network synchronizability. It finds that the two quantities vary independently.
Keywords:  synchronization      chaotic oscillator      complex networks      fluctuation  
Received:  06 January 2010      Revised:  27 November 2010      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60870013 and 10832006).

Cite this article: 

Wang Sheng-Jun(王圣军), Wu Zhi-Xi(吴枝喜), Dong Hai-Rong(董海荣), and Chen Guan-Rong(陈关荣) Undetermination of the relation between network synchronizability and betweenness centrality 2011 Chin. Phys. B 20 048903

[1] Arenas A, D'hiaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
[2] Barahona M and Pecora L M 2002 Phys. Rev. Lett. 89 054101
[3] Nishikawa T, Motter A E, Lai Y C and Hoppensteadt F C 2003 it Phys. Rev. Lett. 91 014101
[4] Hong H, Kim B J, Choi M Y and Park H 2004 Phys. Rev. E 69 067105
[5] Duan Z, Chen G and Huang L 2007 Phys. Rev. E 76 056103
[6] Duan Z, Wang W, Liu C and Chen G 2009 Chin. Phys. B 18 3122
[7] Fu Z Q, Yan G and Zhang Z 2009 Chin. Phys. B 18 2209
[8] Jalili M, Rad A A and Hasler M 2008 Phys. Rev. E 78 016105
[9] Zhao M, Zhou T, Wang B H, Yan G, Yang H J and Bai W J 2006 it Physica A 371 773
[10] Kim D H and Motter A E 2007 Phys. Rev. Lett. 98 248701
[11] Freeman L C 1977 Sociometry 40 35
[12] Newman M E J 2001 Phys. Rev. E 64 016132
[13] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[14] Fink K S, Johnson G, Carroll T, Mar D and Pecora L 2000 Phys. Rev. E 61 5080
[15] Barahona M and Pecora L M 2002 Phys. Rev. Lett. 89 054101
[16] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 it Phys. Rep. 424 175
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[4] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[5] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[6] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[7] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[8] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[9] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[12] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[13] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[14] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[15] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
No Suggested Reading articles found!