Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 047102    DOI: 10.1088/1674-1056/20/4/047102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of the structural, mechanical and electronic properties of ZnX2O4 (X=Al, Cr and Ga)

Zhang Liang(张良)a)b), Ji Guang-Fu(姬广富) b)†, Zhao Feng(赵峰)a), and Gong Zi-Zheng(龚自正)c)
a Science and Technology of Shock Wave and Detonation Physics Laboratory, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China; b College of Physical Science and Technology, Sichuan University, Chengdu 610065, China; c Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
Abstract  This paper performs first-principles calculations to study the structural, mechanical and electronic properties of the spinels ZnAl2O4, ZnGa2O4 and ZnCr2O4, using density functional theory with the plane-wave pseudopotential method. Our calculations are in good agreement with previous theoretical calculations and the available experimental data. The studies in this paper focus on the evolution of the mechanical properties of ZnAl2O4, ZnGa2O4 and ZnCr2O4 under hydrostatic pressure. The results show that the cubic phases of ZnAl2O4, ZnGa2O4 and ZnCr2O4 become unstable at about 50 GPa, 40 GPa and 25 GPa, respectively. From analysis of the band structure of the three compounds at equilibrium volume, it obtains a direct band gap of 4.35 eV for ZnAl2O4 and 0.89 eV for ZnCr2O4, while ZnGa2O4 has an indirect band gap of 2.73 eV.
Keywords:  first-principles calculation      phase transition      elastic constants      bandstructure  
Received:  25 September 2010      Revised:  04 November 2010      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  64.60.A- (Specific approaches applied to studies of phase transitions)  
  62.20.D- (Elasticity)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the Open Research Fund of the State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology (Grant No. GCTKF2010017) and the National Basic Research Program of China (Grant No. 2010CB731600).

Cite this article: 

Zhang Liang(张良), Ji Guang-Fu(姬广富), Zhao Feng(赵峰), and Gong Zi-Zheng(龚自正) First-principles study of the structural, mechanical and electronic properties of ZnX2O4 (X=Al, Cr and Ga) 2011 Chin. Phys. B 20 047102

[1] Wyckoff R W G 1965 Crystal Structures (New York: Interscience) p. 821
[2] Sickafus K E and Hughes R 1999 J. Am. Ceram. Soc. 82 3277
[3] Grimes N W 1975 Phys. Technol. 6 22
[4] Levy D, Pavese A, Sani A and Pischedda V 2001 Phys. Chem. Minerals 28 612
[5] Josties M, O'Neill H S C, Bente K and Brey G 1995 Neues Jahrb. Mineral., Monatsh. 6 273
[6] Reichmann H J and Jacobsen S D 2006 American Mineralogist 91 1049
[7] Joo O S and Jung K D 2003 Bull. Korean Chem. Soc. 24 1
[8] Ha L H, Lanh P T, Long N N and Loan T T 2009 J. Phys.: Conf. Ser. 187 012053
[9] Ciupina V, Carazeanu I and Prodan G 2004 J. Optoelectron. Adv. Mater. 6 1317
[10] Errandonea D, Kumar R S, Manjon F J, Ursaki V V and Rusu E V 2009 Phys. Rev. B 79 024103
[11] Goncalves A D S, Lima S A M D, Davolos M R, Antonio S G and Paiva-Santos C D O 2006 J. Solid State Chem. 179 1330
[12] Krishna K M, Nisha M, Reshmi R, Manoj R, Asha A S and Jayaraj M K 2005 Mater. Forum 29 243
[13] Wang Z, Lazor P, Saxena S K and Artioli G 2002 J. Solid State Chem. 165 165
[14] Levy D, Diella V, Pavese A, Dapiaggi M and Sani A 2005 American Mineralogist 90 1157
[15] Lopez S and Romero A H 2009 Phys. Rev. B 79 214103
[16] Fang C M, Loong, C K, Wijs G A D and With G D 2002 Phys. Rev. B 66 144301
[17] Catti M, Freyria F F, Zicovich C and Dovesi R 1999 Phys. Chem. Minerals 26 389
[18] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulous J D 1992 Rev. Mod. Phys. 64 1045
[19] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895
[20] Vanderbilt D 1990 Phys. Rev. B 41 7892
[21] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[22] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[23] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[24] Pfrommer B G, Cmathophat olimits_cdott.e M, Louie S G and Cohen M L 1977 J. Comput. Phys. 131 233
[25] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[26] Monkhorst H J and Pack J D 1977 Phys. Rev. B 16 1748
[27] Bouhemadou A and Khenata R 2006 Phys. Lett. A 360 339
[28] Wei S H and Zhang S B 2001 Phys. Rev. B 63 045112
[29] Pisani L, Maitra T and Valenti R 2006 Phys. Rev. B 73 205204
[30] Recio J M, Franco R, Martin Pendas A, Blanco M A, Pueyo L and Pandey R 2001 Phys. Rev. B 63 184101
[31] Lopez-Moreno S, Romero A H, Rodriguez Hernandez P and Munoz A 2009 High Pressure Research 29 573
[32] Hill R J, Craig J R and Gibbs G V 1979 Phys. Chem. Minerals 4 317
[33] Sawada H 1997 Materials Reserch Bulletin 32 873
[34] Klemme S and Van Miltenburg J C 2004 Mineralogical Magazine 68 515
[35] O'Neill H S C and Dollase W A 1994 Physics and Chemistry of Minerals 20 541
[36] Cai Y X and Xu R 2009 Chin. Phys. Lett. 26 113101
[37] Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yong J N 2009 Chin. Phys. B 18 2508
[38] Yun J N, Zhang Z Y, Yan J F and Deng Z H 2010 Chin. Phys. B 19 017101
[39] Shao X 2010 Chin. Phys. Lett. 27 016101
[40] Tan C L, Cai W and Tian X H 2010 Chin. Phys. B 19 037101
[41] Zhang H, Liu G L, Qi K Z, Zhang G Y, Xiao M Z and Zhu S L 2010 Chin. Phys. B 19 048601
[42] Zuo C Y, Wen J and Bai Y L 2010 Chin. Phys. B 19 047101
[43] Ci Z P, Wang Y H and Zhang J C 2010 Chin. Phys. B 19 057803
[44] Liu J, Chen L, Liu Y, Dong H N and Zheng R L 2010 Chin. Phys. B 19 037103
[45] Sun X W, Chu Y D, Liu Z J, Liu Y X, Wang C W and Liu W M 2005 Acta Phys. Sin 54 5830 (in Chinese)
[46] Liu Z J, Cheng X L, Chen X R, Zhang H and Lu L Y 2004 Chin. Phys. 13 1096
[47] Finger L W, Hazen R M and Hofmeister A M 1986 Phys. Chem. Minerals 13 215
[48] Pandey R, Gale J D, Sampath S K and Recio J M 1999 J. Am. Ceram. Soc. 82 3337
[49] Sampath S K, Kanhere D J and Pandey R 1999 J. Phys.: Condens. Matter 11 3635
[50] Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)
[51] Khenata R, Sahnoun M, Baltache H, Rerat M, Reshak A H, Al-Douri Y and Bouhafs B 2005 Phys. Lett. A 344 271
[52] Sampath S K and Cordaro J F 1998 J. Am. Ceram. Soc. 81 649 endfootnotesize
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[4] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[5] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[11] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[12] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[13] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[14] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[15] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
No Suggested Reading articles found!