Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 043104    DOI: 10.1088/1674-1056/20/4/043104
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Hydrogen storage capabilities of the most stable isomers of NanBm (m+n=6) clusters

Ruan Wen(阮文), Xie An-Dong(谢安东), Yu Xiao-Guang(余晓光), and Wu Dong-Lan(伍冬兰)
College of Mathematics and Physics, Jinggangshan University, Ji'an 343009, Jiangxi Province, China
Abstract  The most stable isomers of NanBm (m+n=6) clusters and their hydrogen storage properties are investigated by means of density functional theory with a 6-311+G(d) basis set. To study the hydrogen storage properties, all of the stable structures of NanBmHx (m+n=6) clusters have been optimized. It shows that boron atoms of NanBm are separated from the other boron atoms, and form satellite BHx (x=3, 4) clusters around the centre, which attach to the system by a bridging bond of a hydrogen atom or an Na atom. Compared with the hydrogen storage capabilities, the Na3B3 has the highest hydrogen storage capacity among NanBm clusters. The binding energies, interaction energies of hydrogen atom with NanBm clusters and second difference in energy of Na3B3Hx clusters have been calculated. The results show that the stability of the NanBmHx clusters present an odd-even oscillatory effect, as the number of H atoms increases.
Keywords:  density functional theory      Na–B clusters      geometric property      hydrogen storage capabilities  
Received:  28 August 2010      Revised:  04 January 2011      Accepted manuscript online: 
PACS:  31.15.E-  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  36.40.-c (Atomic and molecular clusters)  
  36.40.Qv (Stability and fragmentation of clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10965002 and 30960031), the Science Foundation of Education Committee of Jiangxi Province, China (Grant No. GJJ10540), and the Doctoral Startup Fund of Jinggangshan University.

Cite this article: 

Ruan Wen(阮文), Xie An-Dong(谢安东), Yu Xiao-Guang(余晓光), and Wu Dong-Lan(伍冬兰) Hydrogen storage capabilities of the most stable isomers of NanBm (m+n=6) clusters 2011 Chin. Phys. B 20 043104

[1] Martin J M, Francois J P and Gijbels R 1992 Chem. Phys. Lett. 189 529
[2] Quandt A, Liu A Y and Boustani I 2001 Phys. Rev. B 64 125422
[3] Chacko S, Kanhere D G and Boustani I 2003 Phys. Rev. B 68 035414
[4] Zhai H J, Wang L S, Alexandrova A N, Boldyrev A I and Zakrewski V G 2003 J. Phys. Chem. A 107 9319
[5] Quandt A and Boustani I 2005 Chem. Phys. Chem. 6 2001
[6] Atis M, Ozdogan C and Guvenc Z B 2007 Int. J. Quantum Chem. 107 729
[7] Quandt A, Ozdogan C, Kunstmann J and Fehske H 2008 Nanotechnology 19 335707
[8] Alexandrova A N, Boldyrev A I, Zhai H J and Wang L S 2006 Coord. Chem. Rev. 250 2811
[9] Liu L R, Lei X L, Chen H and Zhu H J 2009 Acta Phys. Sin. 58 5355 (in Chinese)
[10] Li Q S and Jin Q 2004 J. Phys. Chem. A 108 855
[11] Li Q S and Gong L F 2004 J. Phys. Chem. A 108 4322
[12] Zhao Y Y, Zhang M Y, Xu S H and Sun C C 2006 Chem. Phys. Lett. 432 566
[13] Kolmogorov A N and Curtarolo S 2006 Phys. Rev. B 74 224507
[14] Fakihocheck glu E, Yurum Y and Vezirocheck glu T N 2004 Int. J. Hydrogen Energy 29 1371
[15] Zhang J, Bai C G, Pan F S and Luo X D 2008 Ordnance Material Science and Engineering 31 90 (in Chinese)
[16] Yildirim E K and Guvenc Z B 2009 Int. J. Hydrogen Energy 34 4797
[17] Yasumitsu S, Daisuke K and Shuji T 2009 J. Phys. Chem. A 113 2578
[18] Li Z P, Morigazaki N, Liu B H and Suda S 2003 J. Alloys Compd. 349 232
[19] Chen X F, Zhang Y, Qi K T, Li B, Zhu Z H and Sheng Y 2010 Chin. Phys. B 19 033601
[20] Qi K T, Mao H P, Wang H Y and Sheng Y 2010 Chin. Phys. B 19 033602
[21] Ruan W, Hu Q L, Xie A D, Yu X G, Luo W L and Zhu Z H 2009 Acta Phys. Sin. 58 8188 (in Chinese)
[22] Ruan W, Luo W L, Zhang L and Zhu Z H 2008 Acta Phys. Sin. 57 6207 (in Chinese)
[23] Frisch M J, Trucks G W and Schlegel H B, et al. 2003 Gaussian 03 Revision A.7 (Pittsburgh: Gaussian Inc., PA)
[24] Zhang Y P, Zhang F S, Meng K L and Xiao G Q 2007 Acta Phys. Sin. 56 2092 (in Chinese) endfootnotesize
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!