|
|
MRCI study of spectroscopic and molecular properties of X1$\varSigma$g+ and A1$\varPi$u electronic states of the C2 radical |
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒)†, Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略) |
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract The potential energy curves (PECs) of $X^{1}\varSigma _{\rm g}^{ + }$ and $A^{1}\varPi_{\rm u}$ electronic states of the C$_{2}$ radical have been studied using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the aug-cc-pV6Z basis set for internuclear separations from 0.08~nm to 1.66~nm. With these PECs of the C$_{2}$ radical, the spectroscopic parameters of three isotopologues ($^{12}$C$_{2}$, $^{12}$C$^{13}$C and $^{13}$C$_{2})$ have been determined. Compared in detail with previous studies reported in the literature, excellent agreement has been found. The complete vibrational levels $G(\upsilon$), inertial rotation constants $B_{\upsilon }$ and centrifugal distortion constants $D_{\upsilon }$ for the $^{12}$C$_{2}$, $^{12}$C$^{13}$C and $^{13}$C$_{2}$ isotopologues have been calculated for the first time for the $X^{1}\varSigma _{\rm g}^{ + }$ and $A^{1}$$\varPi_{\rm u}$ electronic states when the rotational quantum number $J$ equals zero. The results are in excellent agreement with previous experimental data in the literature, which shows that the presented molecular constants in this paper are reliable and accurate.
|
Received: 13 September 2010
Revised: 04 January 2011
Accepted manuscript online:
|
PACS:
|
31.15.vn
|
(Electron correlation calculations for diatomic molecules)
|
|
31.50.Df
|
(Potential energy surfaces for excited electronic states)
|
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874064) and the Program for Science & Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008). |
Cite this article:
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略) MRCI study of spectroscopic and molecular properties of X1$\varSigma$g+ and A1$\varPi$u electronic states of the C2 radical 2011 Chin. Phys. B 20 043105
|
[1] |
Wollaston W H 1802 Philos. Trans. R. Soc. London 92 365
|
[2] |
Kraemer W P and Roos B O 1987 Chem. Phys. 118 345
|
[3] |
Cecchi-Pestellini C and Dalgarno A 2002 Mon. Not. R. Astron. Soc. 331 L31
|
[4] |
Varandas A J C 2008 J. Chem. Phys. 129 234103
|
[5] |
Phillps J G 1948 Astrophys. J. 107 387
|
[6] |
Brewer L, Hicks W T and Krikorian O H 1962 J. Chem. Phys. 36 182
|
[7] |
Read S M, Vanderslice J T, Hicks W T and Krikorian O H 1962 J. Chem. Phys. 36 1366
|
[8] |
Ballik E A and Ramsay D A 1963 Astrophys. J. 137 84
|
[9] |
Marenin I R and Johnson H R 1970 J. Quantun Spectrosc. Radiat. Transfer 10 305
|
[10] |
Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure, Vol. 4, Constants of Diatomic Molecules (New York: Van Nostrand-Reinhold)
|
[11] |
Amiot C and Verges J 1983 Astron. Astrophys. Suppl. Ser. 51 257
|
[12] |
Amiot C 1983 The Astrophysical Journal Supplement Series 52 329
|
[13] |
Davis S P, Abrams M C, Phillips J G and Rao M L P 1988 J. Opt. Soc. Am. B 5 2280
|
[14] |
Douay M, Nietmann R and Bernath P F 1988 J. Mol. Spectrosc. 131 250
|
[15] |
Martin M 1992 J. Phofochem. Photobiol. A: Chem. 66 263
|
[16] |
Chan M C, Yeung S H, Wong Y Y, Li Y, Chan W M and Yim K H 2004 Chem. Phys. Lett. 390 340
|
[17] |
Fougere P F and Nesbet N K 1966 J. Chem. Phys. 44 285
|
[18] |
Watts J D and Bartlett R J 1992 J. Chem. Phys. 96 6073
|
[19] |
Pradhan A D, Partridge H and Bauschlicher C W 1994 J. Chem. Phys. 101 3857
|
[20] |
Sordo J A 2001 J. Chem. Phys. 114 1974
|
[21] |
Purwanto W, Zhang S and Krakauer H 2009 J. Chem. Phys. 130 094107
|
[22] |
Müller T, Dallos M, Lischka H, Dubrovay Z and Szalay P G 2001 Theor. Chem. Acc. 105 227
|
[23] |
Langhoff S R, Sink M L, Pritchard R H, Kern C W, Strickler S J and Boyd M J 1977 J. Chem. Phys. 67 1051
|
[24] |
Verhaegen G, Richards W G and Moser C M 1967 J. Chem. Phys. 46 160
|
[25] |
Bauschlicher C W and Langhoff S R 1987 J. Chem. Phys. 87 2919
|
[26] |
Mclean A D, Liu B and Chandler G S 1992 J. Chem. Phys. 97 8459
|
[27] |
Valdes E A, Mora P D L, Castro M and Keller J 1997 Int. J. Quantum. Chem. 65 867
|
[28] |
Varandas A J C 2008 J. Chem. Phys. 129 234103
|
[29] |
Varandas A J C 2009 Chem. Phys. Lett. 471 315
|
[30] |
Kirby K and Liu B 1979 J. Chem. Phys. 70 893
|
[31] |
Dupuis M and Liu B 1980 J. Chem. Phys. 73 337
|
[32] |
Chabalowski C F, Peyerimhoff S D and Buenker R J 1983 Chem. Phys. 81 57
|
[33] |
Bruna P J and Wright J S 1992 J. Phys. Chem. 96 1630
|
[34] |
Peterson K A, Kendall R A and Dunning T H 1993 J. Chem. Phys. 99 9790
|
[35] |
Peterson K A 1995 J. Chem. Phys. 102 262
|
[36] |
Sorensen T E and England W B 1998 J. Chem. Phys. 108 5205
|
[37] |
Boggio-Pasqua M, Voronin A I, Halvick P and Rayez J C 2000 J. Mol. Struct. (Theochem) 531 159
|
[38] |
Feller D and Sordo J A 2000 J. Chem. Phys. 113 485
|
[39] |
Wang R, Zhu Z H and Yang C L 2001 J. Mol. Struct. (Theochem) 571 133
|
[40] |
Meissner H and Ema I 2001 J. Mol. Struct. (Theochem) 547 171
|
[41] |
Abrams M L and Sherrill C D 2003 J. Chem. Phys. 118 1604
|
[42] |
Kamiya M and Hirata S 2007 J. Chem. Phys. 126 134112
|
[43] |
Mahapatra U S, Chattopadhyay S and Chaudhuri R K 2008 J. Chem. Phys. 129 024108
|
[44] |
Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
|
[45] |
Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
|
[46] |
Mourik T V, Wilson A K and Dunning T H 1999 Mol. Phys. 96 529
|
[47] |
Zhang X N, Shi D H, Zhang J P, Zhu Z L and Sun J F 2010 Chin. Phys. B 19 053401
|
[48] |
Wang X Q, Yang C L, Su T and Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)
|
[49] |
Zhang X N, Shi D H, Sun J F and Zhu Z L 2010 Chin. Phys. B 19 013501
|
[50] |
Shi D H, Zhang X N, Liu H, Zhu Z L and Sun J F 2010 Chin. Phys. B 19 103401
|
[51] |
Polák R and Fivser J 2003 Chem. Phys. 290 177
|
[52] |
Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio programs
|
[53] |
Krogh J W, Lindh R, Malmqvist P AA, Roos B O, Veryazov V and Widmark P O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)
|
[54] |
González J L M Q and Thompson D 1997 Comput. Phys. 11 514
|
[55] |
Woon D E and Dunning T H 1995 J. Chem. Phys. 103 4572
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|