Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 043105    DOI: 10.1088/1674-1056/20/4/043105
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

MRCI study of spectroscopic and molecular properties of X1Σg+ and A1Πu electronic states of the C2 radical

Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略)
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  The potential energy curves (PECs) of X1Σg+ and A1Πu electronic states of the C2 radical have been studied using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate  valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the aug-cc-pV6Z basis set for  internuclear separations from 0.08~nm to 1.66~nm. With these PECs of the C2 radical, the spectroscopic parameters of three isotopologues  (12C2, 12C13C and 13C2) have been determined. Compared in detail with previous studies reported in the literature,  excellent agreement has been found. The complete vibrational levels G(υ), inertial rotation constants Bυ and centrifugal  distortion constants Dυ for the 12C2, 12C13C and 13C2 isotopologues have been calculated for the  first time for the X1Σg+ and A1Πu electronic states when the rotational quantum number J equals zero. The results are in excellent agreement with previous experimental data in the literature, which shows that the presented molecular  constants in this paper are reliable and accurate.
Keywords:  potential energy curve      spectroscopic parameter      molecular constant      isotope effect  
Received:  13 September 2010      Revised:  04 January 2011      Accepted manuscript online: 
PACS:  31.15.vn (Electron correlation calculations for diatomic molecules)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874064) and the Program for Science & Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008).

Cite this article: 

Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略) MRCI study of spectroscopic and molecular properties of X1Σg+ and A1Πu electronic states of the C2 radical 2011 Chin. Phys. B 20 043105

[1] Wollaston W H 1802 Philos. Trans. R. Soc. London 92 365
[2] Kraemer W P and Roos B O 1987 Chem. Phys. 118 345
[3] Cecchi-Pestellini C and Dalgarno A 2002 Mon. Not. R. Astron. Soc. 331 L31
[4] Varandas A J C 2008 J. Chem. Phys. 129 234103
[5] Phillps J G 1948 Astrophys. J. 107 387
[6] Brewer L, Hicks W T and Krikorian O H 1962 J. Chem. Phys. 36 182
[7] Read S M, Vanderslice J T, Hicks W T and Krikorian O H 1962 J. Chem. Phys. 36 1366
[8] Ballik E A and Ramsay D A 1963 Astrophys. J. 137 84
[9] Marenin I R and Johnson H R 1970 J. Quantun Spectrosc. Radiat. Transfer 10 305
[10] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure, Vol. 4, Constants of Diatomic Molecules (New York: Van Nostrand-Reinhold)
[11] Amiot C and Verges J 1983 Astron. Astrophys. Suppl. Ser. 51 257
[12] Amiot C 1983 The Astrophysical Journal Supplement Series 52 329
[13] Davis S P, Abrams M C, Phillips J G and Rao M L P 1988 J. Opt. Soc. Am. B 5 2280
[14] Douay M, Nietmann R and Bernath P F 1988 J. Mol. Spectrosc. 131 250
[15] Martin M 1992 J. Phofochem. Photobiol. A: Chem. 66 263
[16] Chan M C, Yeung S H, Wong Y Y, Li Y, Chan W M and Yim K H 2004 Chem. Phys. Lett. 390 340
[17] Fougere P F and Nesbet N K 1966 J. Chem. Phys. 44 285
[18] Watts J D and Bartlett R J 1992 J. Chem. Phys. 96 6073
[19] Pradhan A D, Partridge H and Bauschlicher C W 1994 J. Chem. Phys. 101 3857
[20] Sordo J A 2001 J. Chem. Phys. 114 1974
[21] Purwanto W, Zhang S and Krakauer H 2009 J. Chem. Phys. 130 094107
[22] Müller T, Dallos M, Lischka H, Dubrovay Z and Szalay P G 2001 Theor. Chem. Acc. 105 227
[23] Langhoff S R, Sink M L, Pritchard R H, Kern C W, Strickler S J and Boyd M J 1977 J. Chem. Phys. 67 1051
[24] Verhaegen G, Richards W G and Moser C M 1967 J. Chem. Phys. 46 160
[25] Bauschlicher C W and Langhoff S R 1987 J. Chem. Phys. 87 2919
[26] Mclean A D, Liu B and Chandler G S 1992 J. Chem. Phys. 97 8459
[27] Valdes E A, Mora P D L, Castro M and Keller J 1997 Int. J. Quantum. Chem. 65 867
[28] Varandas A J C 2008 J. Chem. Phys. 129 234103
[29] Varandas A J C 2009 Chem. Phys. Lett. 471 315
[30] Kirby K and Liu B 1979 J. Chem. Phys. 70 893
[31] Dupuis M and Liu B 1980 J. Chem. Phys. 73 337
[32] Chabalowski C F, Peyerimhoff S D and Buenker R J 1983 Chem. Phys. 81 57
[33] Bruna P J and Wright J S 1992 J. Phys. Chem. 96 1630
[34] Peterson K A, Kendall R A and Dunning T H 1993 J. Chem. Phys. 99 9790
[35] Peterson K A 1995 J. Chem. Phys. 102 262
[36] Sorensen T E and England W B 1998 J. Chem. Phys. 108 5205
[37] Boggio-Pasqua M, Voronin A I, Halvick P and Rayez J C 2000 J. Mol. Struct. (Theochem) 531 159
[38] Feller D and Sordo J A 2000 J. Chem. Phys. 113 485
[39] Wang R, Zhu Z H and Yang C L 2001 J. Mol. Struct. (Theochem) 571 133
[40] Meissner H and Ema I 2001 J. Mol. Struct. (Theochem) 547 171
[41] Abrams M L and Sherrill C D 2003 J. Chem. Phys. 118 1604
[42] Kamiya M and Hirata S 2007 J. Chem. Phys. 126 134112
[43] Mahapatra U S, Chattopadhyay S and Chaudhuri R K 2008 J. Chem. Phys. 129 024108
[44] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[45] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[46] Mourik T V, Wilson A K and Dunning T H 1999 Mol. Phys. 96 529
[47] Zhang X N, Shi D H, Zhang J P, Zhu Z L and Sun J F 2010 Chin. Phys. B 19 053401
[48] Wang X Q, Yang C L, Su T and Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)
[49] Zhang X N, Shi D H, Sun J F and Zhu Z L 2010 Chin. Phys. B 19 013501
[50] Shi D H, Zhang X N, Liu H, Zhu Z L and Sun J F 2010 Chin. Phys. B 19 103401
[51] Polák R and Fivser J 2003 Chem. Phys. 290 177
[52] Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio programs
[53] Krogh J W, Lindh R, Malmqvist P AA, Roos B O, Veryazov V and Widmark P O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)
[54] González J L M Q and Thompson D 1997 Comput. Phys. 11 514
[55] Woon D E and Dunning T H 1995 J. Chem. Phys. 103 4572
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[3] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[4] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[5] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[6] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[7] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[8] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[9] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[10] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[11] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[12] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[13] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[14] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[15] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
No Suggested Reading articles found!