|
|
Structural and bonding properties of ScSin- (n=2~6) clusters: photoelectron spectroscopy and density functional calculations |
Xu Hong-Guang(许洪光)a), Wu Miao-Miao(吴苗苗) b), Zhang Zeng-Guang(张增光)a), Sun Qiang(孙强)b)†, and Zheng Wei-Jun(郑卫军)a)‡ |
a Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; b Department of Advanced Materials and Nanotechnology and Center for Applied Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSi$_{n}^{ - }$ ($n=2\sim6$) clusters and their neutrals. We find that the structures of ScSi$_{n}^{ - }$ are similar to those of Si$_{n + 1}^{ - }$. The most stable isomers of ScSi$_{n}^{ - }$ cluster anions and their neutrals are similar for $n$=2, 3 and 5 but different for $n$=4 and 6, indicating that the charge effect on geometry is size dependent for small scandium--silicon clusters. The low electron binding energy (EBE) tails observed in the spectra of ScSi$_{4,6}^{ - }$ can be explained by the existence of less stable isomers. A comparison between ScSi$_{n}^{ - }$ and VSi$_{n}^{ - }$ clusters shows the effects of metal size and electron configuration on cluster geometries.
|
Received: 31 August 2010
Revised: 14 October 2010
Accepted manuscript online:
|
PACS:
|
31.15.E-
|
|
|
33.60.+q
|
(Photoelectron spectra )
|
|
36.40.Mr
|
(Spectroscopy and geometrical structure of clusters)
|
|
Fund: Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-01) and the National Natural Science Foundation of China (Grant Nos. 20853001 and 10874007). |
Cite this article:
Xu Hong-Guang(许洪光), Wu Miao-Miao(吴苗苗), Zhang Zeng-Guang(张增光), Sun Qiang(孙强), and Zheng Wei-Jun(郑卫军) Structural and bonding properties of ScSin- (n=2~6) clusters: photoelectron spectroscopy and density functional calculations 2011 Chin. Phys. B 20 043102
|
[1] |
Yamamoto E, Tansho M, Tomiyama T, Shinohara H, Kawahara H and Kobayashi Y 1996 J. Am. Chem. Soc. 118 2293
|
[2] |
Takata M, Nishibori E, Umeda B, Sakata M, Yamamoto E and Shinohara H 1997 Phys. Rev. Lett. 78 3330
|
[3] |
Yamazaki Y, Nakajima K, Wakahara T, Tsuchiya T, Ishitsuka M O, Maeda Y, Akasaka T, Waelchli M, Mizorogi N and Nagase S 2008 Angew. Chem. Int. Ed. 47 7905
|
[4] |
Ito Y, Fujita W, Okazaki T, Sugai T, Awaga K, Nishibori E, Takata M, Sakata M and Shinohara H 2007 Chem. Phys. Chem. 8 1019
|
[5] |
Koyasu K, Akutsu M, Mitsui M and Nakajima A 2005 J. Am. Chem. Soc. 127 4998
|
[6] |
Koyasu K, Atobe J, Furuse S and Nakajima A 2008 J. Chem. Phys. 129 214301
|
[7] |
Torres M B, Fernandez E M and Balbas L C 2007 Phys. Rev. B 75 205425
|
[8] |
Xiao C Y, Abraham A, Quinn R, Hagelberg F and Lester W A 2002 J. Phys. Chem. A 106 11380
|
[9] |
He J G, Wu K C, Liu C P and Sa R J 2009 Chem. Phys. Lett. 483 30
|
[10] |
Wang J, Ma Q M, Xu R P, Liu Y and Li Y C 2009 Phys. Lett. A 373 2869
|
[11] |
Koyasu K, Atobe J, Akutsu M, Mitsui M and Nakajima A 2007 J. Phys. Chem. A 111 42
|
[12] |
Reveles J U and Khanna S N 2006 Phys. Rev. B 74 035435
|
[13] |
Xu H G, Zhang Z G, Feng Y and Zheng W J 2010 Chem. Phys. Lett. 498 22
|
[14] |
Xu H G, Zhang Z G, Feng Y, Yuan J Y, Zhao Y C and Zheng W J 2010 Chem. Phys. Lett. 487 204
|
[15] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Jr, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W J B, Chen W W M W, Andres J L G C, Head-Gordon M, Replogle E S and Pople J A Gaussian 03 Gaussian Inc. Pittsburgh, PA
|
[16] |
Ohara M, Miyajima K, Pramann A, Nakajima A and Kaya K 2002 J. Phys. Chem. A 106 3702
|
[17] |
Grubisic A, Ko Y J, Wang H P and Bowen K H 2009 J. Am. Chem. Soc. 131 10783
|
[18] |
Xu C S, Taylor T R, Burton G R and Neumark D M 1998 J. Chem. Phys. 108 1395
|
[19] |
Peppernick S J, Gunaratne K D D, Sayres S G and Castleman A W 2010 J. Chem. Phys. 132 13
|
[20] |
Raghavachari K and Rohlfing C M 1991 J. Chem. Phys. 94 3670
|
[21] |
Zubarev D Y, Boldyrev A I, Li X, Cui L F and Wang L S 2005 J. Phys. Chem. A 109 11385 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|