Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 128702    DOI: 10.1088/1674-1056/20/12/128702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Radiation-induced robust oscillation and non-Gaussian fluctuation

Liu Bo(刘波)a)b)c), Yan Shi-Wei (晏世伟)c)d)e), and Geng Yi-Zhao(耿轶钊)c)
a Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; b Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875, Chinac College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, ChinaBeijing Radiation Centre, Beijing 100875, ChinaCentre of Theoretical Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China 
Abstract  There have been many recent studies devoted to the consequences of stochasticity in protein circuitry. Stress conditions, including DNA damage, hypoxia, heat shock, nutrient deprivation, and oncogene activation, can result in the activation and accumulation of p53. Several experimental studies show that oscillations can be induced by DNA damage following nuclear irradiation. To explore the underlying dynamical features and the role of stochasticity, we discuss the oscillatory dynamics in the well-studied regulatory network motif. The fluctuations around the fixed point of a delayed system are Gaussian in the limit of sufficiently weak delayed feedback, and remain Gaussian along a limit cycle when viewed tangential to the trajectory. The experimental results are recapitulated in this study. We illustrate several features of the p53 activities, which are robust when the parameters change. Furthermore, the distribution in protein abundance can be characterized by its non-Gaussian nature.
Keywords:  nuclear radiation      DNA damage      non-Gaussian activity      robustness  
Received:  07 September 2010      Revised:  16 August 2011      Accepted manuscript online: 
PACS:  87.16.Yc (Regulatory genetic and chemical networks)  
  87.18.Tt (Noise in biological systems)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10975019), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Personnel of China (Grant No. MOP2006138), the Fundamental Research Funds for the Central Universities, and the Science Foundation of the Ministry of Science and Technology of China (Grant No. 2012CB934001).

Cite this article: 

Liu Bo(刘波), Yan Shi-Wei (晏世伟), and Geng Yi-Zhao(耿轶钊) Radiation-induced robust oscillation and non-Gaussian fluctuation 2011 Chin. Phys. B 20 128702

[1] Elowitz M, Levine A, Siggia E and Swain P 2002 Science 297 1183
[2] Bar-Even A, Paulsson J, Maheshri N, Carmi M, O'Shea E, Pilpel Y and Barkai N 2006 Nat. Genet. 38 636
[3] Newman J, Ghaemmaghami S, Ihmels J, Breslow D, Noble M, DeRisi J and Weissman J 2006 Nature 441 840
[4] Raj A and van Oudenaarden A 2009 Ann. Rev. Biophys. 38 255
[5] Lev Bar-Or R, Maya R, Segel L, Alon U, Levine A and Oren M 2000 Proc. Natl. Acad. Sci. USA 97 11250
[6] Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine A, Elowitz M and Alon U 2004 Nat. Genet. 36 147
[7] Tyson J J 2004 Nat. Genet. 36 113
[8] Ma L, Wagner J, Rice J, Hu W, Levine A and Stolovitzky G 2005 Proc. Natl. Acad. Sci. USA 102 14266
[9] Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G and Alon U 2006 Mol. Syst. Biol. 2 2006.0033
[10] Tyson J J 2006 Mol. Syst. Biol. 2 2006.0032
[11] Batchelor E, Mock C, Bhan I, Loewer A and Lahav G 2008 Mol. Cell 30 277
[12] Proctor C and Gray D 2008 BMC Syst. Biol. 2 75
[13] Yan S W and Zhuo Y Z 2006 Physica D 220 157
[14] Yan S W 2007 J. Biol. Syst. 15 123
[15] Wilkinson D J 2009 Nat. Rev. Genet. 10 122
[16] Yan S W, Sakata F and Zhuo Y Z 2002 Phys. Rev. E 65 031111
[17] Green M S 1954 J. Chem. Phys. 22 398
[18] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[19] Yan S W, Wang Q, Xie B S and Zhang F S 2007 Chin. Phys. Lett. 24 1771
[20] Risken H 1989 The Fokker-Planck Equation: Methods of Solution and Applications 2nd edn. (Berlin: Springer)
[21] Frank T D, Beek P J and Friedrich R 2003 Phys. Rev. E 68 021912
[22] Dieterich P, Klages R, Preuss R and Schwab A 2008 Proc. Natl. Acad. Sci. USA 105 459
[23] Gheorghiu S and Coppens M O 2004 Proc. Natl. Acad. Sci. USA 101 15852
[24] Liu B and Goree J 2008 Phys. Rev. Lett. 100 055003
[25] Scott M 2009 Phys. Rev. E 80 031129
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[3] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[4] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[5] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[6] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[7] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
[8] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[9] Computational mechanistic investigation of radiation damage of adenine induced by hydroxyl radicals
Rongri Tan(谈荣日), Huixuan Liu(刘慧宣), Damao Xun(寻大毛), Wenjun Zong(宗文军). Chin. Phys. B, 2018, 27(2): 027102.
[10] The robustness of sparse network under limited attack capacity
Xiao-Juan Wang(王小娟), Mei Song(宋梅), Lei Jin(金磊), Zhen Wang(王珍). Chin. Phys. B, 2017, 26(8): 088901.
[11] Degree distribution and robustness of cooperativecommunication network with scale-free model
Wang Jian-Rong (王建荣), Wang Jian-Ping (王建萍), He Zhen (何振), Xu Hai-Tao (许海涛). Chin. Phys. B, 2015, 24(6): 060101.
[12] Effects of systematic phase errors on optimized quantum random-walk search algorithm
Zhang Yu-Chao (张宇超), Bao Wan-Su (鲍皖苏), Wang Xiang (汪翔), Fu Xiang-Qun (付向群). Chin. Phys. B, 2015, 24(6): 060304.
[13] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰). Chin. Phys. B, 2015, 24(3): 034208.
[14] An effective method to improve the robustness of small-world networks under attack
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(8): 088902.
[15] An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance
Hua Li-Li (花丽丽), Xu Ning (徐宁), Yang Geng (杨庚). Chin. Phys. B, 2014, 23(6): 064201.
No Suggested Reading articles found!