Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 126102    DOI: 10.1088/1674-1056/20/12/126102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical studies on the structural, electronic, and optical properties of Ag2HgSnSe4

Li Dan (李丹), Zhang Xing-Hong (张幸红)
Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
Abstract  We investigate the electronic structure of Ag2HgSnSe4 in a wurtzite-stannite structure with the first principles method. This crystal is a direct band-gap compound. In addition the dielectric function, absorption coefficient, reflectivity, and energy-loss function are studied using the density functional theory in the generalized gradient approximation. We discuss the optical transitions between the valence bands and the conduction bands in the spectrum of the imaginary part of the dielectric function at length. We also find a very high absorption coefficient and a wide absorption band for this material. The prominent structures in the spectra of reflectivity and the energy-loss function are discussed in detail.
Keywords:  wurtzite-stannite      density functional theory      generalized gradient approximation  
Received:  03 June 2011      Revised:  04 July 2011      Accepted manuscript online: 
PACS:  61.82.Fk (Semiconductors)  
  71.20.Nr (Semiconductor compounds)  
  77.20.Ch  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10902029).

Cite this article: 

Li Dan (李丹), Zhang Xing-Hong (张幸红) Theoretical studies on the structural, electronic, and optical properties of Ag2HgSnSe4 2011 Chin. Phys. B 20 126102

[1] Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H and Takeuchi A 2009 Thin Solid Films 517 2455
[2] Tanaka K, Oonuki M, Moritake N and Uchiki H 2009 Sol. Energy Mater. Sol. Cells 93 583
[3] Weber A, Schmidt S, Abou-Ras D, Schubert-Bischoff P, Denks I, Mainz R and Schock H W 2009 Appl. Phys. Lett. 95 041904
[4] Guo Q, Hillhouse H W and Agrawal R 2009 J. Am. Chem. Soc. 131 11672
[5] Steinhagen C, Panthani M G, Akhavan V, Goodfellow B, Koo B and Korgel B A 2009 J. Am. Chem. Soc. 131 12554
[6] Scragg J, Dale P and Peter L 2009 Thin Solid Films 517 2481
[7] Shavel A, Arbiol J and Cabot A 2010 J. Am. Chem. Soc. 132 4514
[8] Ahn S, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H and Yun J H 2010 Appl. Phys. Lett. 97 021905
[9] Todorov T K, Reuter K B and Mitzi D B 2010 Adv. Mater. 22 E156
[10] Hirai T, Kurata K and Takeda Y 1967 Solid-State Electronics 10 975
[11] Haueseler H and Himmrich M 1989 Z. Naturforsch. B 44 1035
[12] Himmrich M and Haeuseler H1991 Spectrochim. Acta 47A 933
[13] Parasyuk O V 1999 J. Alloys Compd. 291 215
[14] Parasyuk O V, Gulay L D, Piskach L V and Kumanska Yu O 2002 J. Alloys Compd. 339 140
[15] Dou Y K, Jin H B, Cao M S, Fang X Y, Hou Z L, Li D and Agathopoulos S 2011 J. Alloys Compd. 509 6117
[16] Wang L N, Fang X Y, Hou Z L, Li Y L, Wang K, Yuan J and Cao M S 2011 Chin. Phys. Lett. 28 027101
[17] Feng G Y, Fang X Y, Wang J J, Zhou Y, Lu R, Yuan J and Cao M S 2010 Physica B 405 2625
[18] Wang J J, Fang X Y, Feng G Y, Song W L, Hou Z L, Jin H B, Yuan J and Cao M S 2010 Phys. Lett. A 374 2286
[19] Hou Z L, Cao M S, Yuan J, Fang X Y and Shi X L 2009 J. Appl. Phys. 105 076103
[20] Vanderbilt D 1990 Phys. Rev. B 41 7892
[21] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Parasyuk O V, Chykhrij S I, Bozhko V V, Piskach L V, Bogdanyuk M S, Olekseyuk I D, Bulatetska L V and Pekhnyo V I 2005 J. Alloys Compd. 399 32
[25] Hou Z L, Cao M S, Yuan J and Song W L 2010 Chin. Phys. B 19 017702
[26] Cao M S, Hou Z L, Yuan J, Xiong L T and Shi X L 2009 J. Appl. Phys. 105 106102
[27] Li C L, Wang B, Wang R, Wang H and Lu X Y 2008 Physica B 403 539
[28] Saha S and Sinha T P 2000 Phys. Rev. B 62 8828
[29] Bouhemadou A and Khenata R 2007 Comput. Mater. Sci. 39 803
[30] Saniz R, Ye L H, Shishidou T and Freeman A J 2006 Phys. Rev. B 74 014209
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!